50 research outputs found

    Partial restoration of normal intestinal microbiota in morbidly obese women six months after bariatric surgery

    Get PDF
    We studied the impact of bariatric surgery on the intestinal microbiota of morbidly obese study subjects. A total of 13 morbidly obese women (five of which had type 2 diabetes) and 14 healthy age- and gender-matched controls were recruited and the microbiota composition of fecal samples were determined by using a phylogenetic microarray. Sampling of the patients took place just one month before and 6 months after the operation. Within six months after bariatric surgery, the obese subjects had lost on average a quarter of their weight whereas four of the five of the diabetic subjects were in remission. Bariatric surgery was associated with an increased microbial community richness and Bacteroidetes/Firmicutes ratio. In addition, we observed an increased relative abundance of facultative anaerobes, such as Streptococcus spp., and a reduction in specific butyrate-producing Firmicutes. The observed postoperative alterations in intestinal microbiota reflect adaptation to the changing conditions in the gastrointestinal tract, such as energy restriction and the inability to process fiber-rich foods after bariatric surgery.Peer reviewe

    Insulin-stimulated glucose uptake in skeletal muscle, adipose tissue and liver: A positron emission tomography study

    Get PDF
    Objective: Insulin resistance is reflected by the rates of reduced glucose uptake (GU) into the key insulin-sensitive tissues, skeletal muscle, liver and adipose tissue. It is unclear whether insulin resistance occurs simultaneously in all these tissues or whether insulin resistance is tissue specific. Design and methods: We measured GU in skeletal muscle, adipose tissue and liver and endogenous glucose production (EGP), in a single session using 18F-fluorodeoxyglucose with positron emission tomography (PET) and euglycemic–hyperinsulinemic clamp. The study population consisted of 326 subjects without diabetes from the CMgene study cohort. Results: Skeletal muscle GU less than 33 ”mol/kg tissue/min and subcutaneous adipose tissue GU less than 11.5 ”mol/kg tissue/min characterized insulin-resistant individuals. Men had considerably worse insulin suppression of EGP compared to women. By using principal component analysis (PCA), BMI inversely and skeletal muscle, adipose tissue and liver GU positively loaded on same principal component explaining one-third of the variation in these measures. The results were largely similar when liver GU was replaced by EGP in PCA. Liver GU and EGP were positively associated with aging. Conclusions: We have provided threshold values, which can be used to identify tissue-specific insulin resistance. In addition, we found that insulin resistance measured by GU was only partially similar across all insulin-sensitive tissues studied, skeletal muscle, adipose tissue and liver and was affected by obesity, aging and gender.</p

    The Obesity Risk SNP (rs17782313) near the MC4R Gene Is Not Associated with Brain Glucose Uptake during Insulin Clamp-A Study in Finns

    Get PDF
    The melanocortin system is involved in the control of adiposity through modulation of food intake and energy expenditure. The single nucleotide polymorphism (SNP) rs17782313 near the MC4R gene has been linked to obesity, and a previous study using magnetoencephalography has shown that carriers of the mutant allele have decreased cerebrocortical response to insulin. Thus, in this study, we addressed whether rs17782313 associates with brain glucose uptake (BGU). Here, [F-18]-fluorodeoxyglucose positron emission tomography (PET) data from 113 Finnish subjects scanned under insulin clamp conditions who also had the rs17782313 determined were compiled from a single-center cohort. BGU was quantified by the fractional uptake rate. Statistical analysis was performed with statistical parametric mapping. There was no difference in age, BMI, and insulin sensitivity as indexed by the M value between the rs17782313-C allele carriers and non-carriers. Brain glucose uptake during insulin clamp was not different by gene allele, and it correlated with the M value, in both the rs17782313-C allele carriers and non-carriers. The obesity risk SNP rs17782313 near the MC4R gene is not associated with brain glucose uptake during insulin clamp in humans, and this frequent mutation cannot explain the enhanced brain glucose metabolic rates in insulin resistance

    Brain free fatty acid uptake is elevated in morbid obesity, and is irreversible 6 months after bariatric surgery: A positron emission tomography study

    Get PDF
    AimTo investigate whether there are differences in brain fatty acid uptake (BFAU) between morbidly obese and lean subjects, and the effect of weight loss following bariatric surgery.Materials and methodsWe measured BFAU with 14(R, S)‐[18F]fluoro‐6‐thia‐heptadecanoic acid and positron emission tomography in 24 morbidly obese and 14 lean women. Obese subjects were restudied 6 months after bariatric surgery. We also assessed whether there was hypothalamic neuroinflammation in the obese subjects using fluid‐attenuated inversion recovery (FLAIR) magnetic resonance imaging.ResultsObese subjects had a higher BFAU than lean subjects (1.12 [0.61] vs. 0.72 [0.50] ÎŒmol 100 g−1 min−1, P = 0.0002), driven by higher fatty acid uptake availability. BFAU correlated positively with BMI (P = 0.006, r = 0.48), whole body fatty acid oxidation (P = 0.006, r = 0.47) and leptin levels (P = 0.001, r = 0.54). When BFAU, leptin and body mass index (BMI) were included in the same model, the association between BFAU and leptin was the strongest. BFAU did not correlate with FLAIR‐derived estimates of hypothalamic inflammation. Six months after bariatric surgery, obese subjects achieved significant weight loss (−10 units of BMI). BFAU was not significantly changed (1.12 [0.61] vs. 1.09 [0.39] ÎŒmol 100 g−1 min−1, ns), probably because of the ongoing catabolic state. Finally, baseline BFAU predicted worse plasma glucose levels at 2 years of follow‐up.ConclusionsBFAU is increased in morbidly obese compared with lean subjects, and is unchanged 6 months after bariatric surgery. Baseline BFAU predicts worse plasma glucose levels at follow‐up, supporting the notion that the brain participates in the control of whole‐body homeostasis.</p

    Exercise intensity regulates cytokine and klotho responses in men

    Get PDF
    Background Short-term exercise training programs that consist of moderate intensity endurance training or high intensity interval training have become popular choices for healthy lifestyle modifications, with as little as two weeks of training being shown to improve cardiorespiratory fitness and whole-body glucose metabolism. An emerging concept in exercise biology is that exercise stimulates the release of cytokines and other factors into the blood that contribute to the beneficial effects of exercise on metabolism, but whether these factors behave similarly in response to moderate and high intensity short term training is not known. Here, we determined the effects of two short-term exercise training programs on the concentrations of select secreted cytokines and Klotho, a protein involved in anti-aging. Methods Healthy, sedentary men (n = 22) were randomized to moderate intensity training (MIT) or sprint intensity training (SIT) treatment groups. SIT consisted of 6 sessions over 2 weeks of 6 x 30 s all out cycle ergometer sprints with 4 min of recovery between sprints. MIT consisted of 6 sessions over 2 weeks of cycle ergometer exercise at 60% VO2peak, gradually increasing in duration from 40 to 60 min. Blood was taken before the intervention and 48 h after the last training session, and glucose uptake was measured using [18F]FDG-PET/CT scanning. Cytokines were measured by multiplex and Klotho concentrations by ELISA. Results Both training protocols similarly increased VO2peak and decreased fat percentage and visceral fat (P Conclusion Short-term exercise training at markedly different intensities similarly improves cardiovascular fitness but results in intensity-specific changes in cytokine responses to exercise.</div

    Brain glucose uptake is associated with endogenous glucose production in obese patients before and after bariatric surgery and predicts metabolic outcome at follow-up

    Get PDF
    Aims: To investigate further the finding that insulin enhances brain glucose uptake (BGU) in obese but not in lean people by combining BGU with measures of endogenous glucose production (EGP), and to explore the associations between insulin-stimulated BGU and peripheral markers, such as metabolites and inflammatory markers. Materials and methods: A total of 20 morbidly obese individuals and 12 lean controls were recruited from the larger randomized controlled SLEEVEPASS study. All participants were studied under fasting and euglycaemic hyperinsulinaemic conditions using fluorodeoxyglucose-positron emission tomography. Obese participants were re-evaluated 6 months after bariatric surgery and were followed-up for ~3 years. Results: In obese participants, we found a positive association between BGU and EGP during insulin stimulation. Across all participants, insulin-stimulated BGU was associated positively with systemic inflammatory markers and plasma levels of leucine and phenylalanine. Six months after bariatric surgery, the obese participants had achieved significant weight loss. Although insulin-stimulated BGU was decreased postoperatively, the association between BGU and EGP during insulin stimulation persisted. Moreover, high insulin-stimulated BGU at baseline predicted smaller improvement in fasting plasma glucose at 2 and 3 years of follow-up. Conclusions: Our findings suggest the presence of a brain-liver axis in morbidly obese individuals, which persists postoperatively. This axis might contribute to further deterioration of glucose homeostasis.</p

    Exercise Training Modulates Gut Microbiota Profile and Improves Endotoxemia

    Get PDF
    INRTRODUCTION:Intestinal metabolism and microbiota profiles are impaired in obesity and insulin resistance. Moreover, dysbiotic gut microbiota has been suggested to promote systemic low-grade inflammation and insulin resistance through the release of endotoxins particularly lipopolysaccharides. We have previously shown that exercise training improves intestinal metabolism in healthy men. To understand whether changes in intestinal metabolism interact with gut microbiota and its release of inflammatory markers, we studied the effects of sprint interval (SIT) and moderate intensity continuous training (MICT) on intestinal metabolism and microbiota in insulin resistance.METHODS:Twenty-six, sedentary subjects (prediabetic n=9, T2D n=17; age 49[SD 4] years; BMI 30.5[SD 3]) were randomized into SIT or MICT. Intestinal insulin-stimulated glucose uptake (GU) and fatty acid uptake (FAU) from circulation were measured using PET. Gut microbiota composition was analysed by 16S rRNA gene sequencing and serum inflammatory markers with multiplex assays and enzyme-linked immunoassay kit.RESULTS:VO2peak improved only after SIT (p=0.01). Both training modes reduced systematic and intestinal inflammatory markers (TNF α, LBP) (time pCONCLUSION:Intestinal substrate uptake associates with gut microbiota composition and activity and whole-body insulin sensitivity. Exercise training improves gut microbiota profiles and reduces endotoxemia.</p

    Change in abdominal, but not femoral subcutaneous fat CT-radiodensity is associated with improved metabolic profile after bariatric surgery

    Get PDF
    Background and aims: Computed tomography (CT)-derived adipose tissue radiodensity represents a potential noninvasive surrogate marker for lipid deposition and obesity-related metabolic disease risk. We studied the effects of bariatric surgery on CT-derived adipose radiodensities in abdominal and femoral areas and their relationships to circulating metabolites in morbidly obese patients. Methods and results: We examined 23 morbidly obese women who underwent CT imaging before and 6 months after bariatric surgery. Fifteen healthy non-obese women served as controls. Radiodensities of the abdominal subcutaneous (SAT) and visceral adipose tissue (VAT), and the femoral SAT, adipose tissue masses were measured in all participants. Circulating metabolites were measured by NMR. At baseline, radiodensities of abdominal fat depots were lower in the obese patients as compared to the controls. Surprisingly, radiodensity of femoral SAT was higher in the obese as compared to the controls. In the abdominal SAT depot, radiodensity strongly correlated with SAT mass (r =-0.72, p < 0.001). After surgery, the radiodensities of abdominal fat increased significantly (both p < 0.01), while femoral SAT radio density remained unchanged. Circulating ApoB/ApoA-I, leucine, valine, and GlycA decreased, while glycine levels significantly increased as compared to pre-surgical values (all p < 0.05). The increase in abdominal fat radiodensity correlated negatively with the decreased levels of ApoB/ApoA-I ratio, leucine and GlycA (all p < 0.05). The increase in abdominal SAT density was significantly correlated with the decrease in the fat depot mass (r =-0.66, p = 0.002).Conclusion: Higher lipid content in abdominal fat depots, and lower content in femoral subcutaneous fat, constitute prominent pathophysiological features in morbid obesity. Further studies are needed to clarify the role of non-abdominal subcutaneous fat in the pathogenesis of obesity. Clinical trial registration number: NCT01373892. (C) 2020 The Italian Diabetes Society, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V

    Brain substrate metabolism and ß-cell function in humans: A positron emission tomography study

    Get PDF
    AimsRecent clinical studies have shown enhanced brain glucose uptake during clamp and brain fatty acid uptake in insulin‐resistant individuals. Preclinical studies suggest that the brain may be involved in the control of insulin secretion. The aim of this study was to investigate whether brain metabolism assessed as brain glucose and fatty acid uptake is associated with the parameters of ÎČ‐cell function in humans.Materials and methodsWe analysed cross‐sectional data of 120 subjects across a wide range of BMI and insulin sensitivity. Brain glucose uptake (BGU) was measured during euglycaemic‐hyperinsulinaemic clamp (n = 67) and/or during fasting (n = 45) using [18F]‐fluorodeoxyglucose (FDG) positron emission tomography (PET). In another group of subjects (n = 34), brain fatty acid uptake was measured using [18F]‐fluoro‐6‐thia‐heptadecanoic acid (FTHA) PET during fasting. The parameters of ÎČ‐cell function were derived from OGTT modelling. Statistical analysis was performed with whole‐brain voxel‐based statistical parametric mapping.ResultsIn non‐diabetics, BGU during euglycaemic hyperinsulinaemic clamp correlated positively with basal insulin secretion rate (r = 0.51, P = .0008) and total insulin output (r = 0.51, P = .0008), whereas no correlation was found in type 2 diabetics. BGU during clamp correlated positively with potentiation in non‐diabetics (r = 0.33, P = .02) and negatively in type 2 diabetics (r = −0.61, P = .02). The associations in non‐diabetics were not explained with whole‐body insulin sensitivity or BMI. No correlations were found between baseline (fasting) BGU and basal insulin secretion rate, whereas baseline brain fatty acid uptake correlated directly with basal insulin secretion rate (r = 0.39, P = .02) and inversely with potentiation (r = −0.36, P = .04).ConclusionsOur study provides coherent, though correlative, evidence that, in humans, the brain may be involved in the control of insulin secretion independently of insulin sensitivity.</div

    Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis : effects of exercise training (CROSSYS). Exercise training intervention in monozygotic twins discordant for body weight

    Get PDF
    Background: Obesity and physical inactivity are major global public health concerns, both of which increase the risk of insulin resistance and type 2 diabetes. Regulation of glucose homeostasis involves cross-talk between the central nervous system, peripheral tissues, and gut microbiota, and is affected by genetics. Systemic cross-talk between brain, gut, and peripheral tissues in glucose homeostasis: effects of exercise training (CROSSYS) aims to gain new systems-level understanding of the central metabolism in human body, and how exercise training affects this cross-talk. Methods: CROSSYS is an exercise training intervention, in which participants are monozygotic twins from pairs discordant for body mass index (BMI) and within a pair at least the other is overweight. Twins are recruited from three population-based longitudinal Finnish twin studies, including twins born in 1983-1987, 1975-1979, and 1945-1958. The participants undergo 6-month-long exercise intervention period, exercising four times a week (including endurance, strength, and high-intensity training). Before and after the exercise intervention, comprehensive measurements are performed in Turku PET Centre, Turku, Finland. The measurements include: two positron emission tomography studies (insulin-stimulated whole-body and tissue-specific glucose uptake and neuroinflammation), magnetic resonance imaging (brain morphology and function, quantification of body fat masses and organ volumes), magnetic resonance spectroscopy (quantification of fat within heart, pancreas, liver and tibialis anterior muscle), echocardiography, skeletal muscle and adipose tissue biopsies, a neuropsychological test battery as well as biosamples from blood, urine and stool. The participants also perform a maximal exercise capacity test and tests of muscular strength. Discussion: This study addresses the major public health problems related to modern lifestyle, obesity, and physical inactivity. An eminent strength of this project is the possibility to study monozygotic twin pairs that share the genome at the sequence level but are discordant for BMI that is a risk factor for metabolic impairments such as insulin resistance. Thus, this exercise training intervention elucidates the effects of obesity on metabolism and whether regular exercise training is able to reverse obesity-related impairments in metabolism in the absence of the confounding effects of genetic factors.Peer reviewe
    corecore