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KEYWORDS Abstract Background and aims: Computed tomography (CT)-derived adipose tissue radiodensity
Computed represents a potential noninvasive surrogate marker for lipid deposition and obesity-related metabolic
tomography; disease risk. We studied the effects of bariatric surgery on CT-derived adipose radiodensities in abdom-
CT-Radiodensity; inal and femoral areas and their relationships to circulating metabolites in morbidly obese patients.
Metabolomics; Methods and results: We examined 23 morbidly obese women who underwent CT imaging before and 6
Morbid obesity; months after bariatric surgery. Fifteen healthy non-obese women served as controls. Radiodensities of
Bariatric surgery the abdominal subcutaneous (SAT) and visceral adipose tissue (VAT), and the femoral SAT, adipose tissue

masses were measured in all participants. Circulating metabolites were measured by NMR. At baseline,
radiodensities of abdominal fat depots were lower in the obese patients as compared to the controls.
Surprisingly, radiodensity of femoral SAT was higher in the obese as compared to the controls. In the
abdominal SAT depot, radiodensity strongly correlated with SAT mass (r = -0.72, p < 0.001). After sur-
gery, the radiodensities of abdominal fat increased significantly (both p < 0.01), while femoral SAT radio-
density remained unchanged. Circulating ApoB/ApoA-I, leucine, valine, and GlycA decreased, while
glycine levels significantly increased as compared to pre-surgical values (all p < 0.05). The increase in
abdominal fat radiodensity correlated negatively with the decreased levels of ApoB/ApoA-I ratio, leucine
and GlycA (all p < 0.05). The increase in abdominal SAT density was significantly correlated with the
decrease in the fat depot mass (r = -0.66, p = 0.002).

Conclusion: Higher lipid content in abdominal fat depots, and lower content in femoral subcutaneous
fat, constitute prominent pathophysiological features in morbid obesity. Further studies are needed
to clarify the role of non-abdominal subcutaneous fat in the pathogenesis of obesity.
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Introduction

Excessive lipid deposition into metabolically relevant
tissues compromises peripheral insulin sensitivity and
contributes to the risk of metabolic diseases seen in
obesity [1]. Morbid obesity is associated with elevated
systemic biomarkers of metabolic dysfunction [2] as well
as with elevated levels of circulating fatty acids, lipo-
proteins and branch-chained amino acids (BCAA) [3].
These have been recognized to strongly associate with
insulin resistance, diabetes and cardiovascular disease
[4—6]. Conversely, elevated levels of glycine are associ-
ated with an improved glycemic control and reduced
inflammation [7,8].

Computed tomography (CT) scans can distinguish
different tissue types based on the radiodensity, which is
expressed as Hounsfield units (HU) [9]. The radiodensity of
white adipose tissue typically ranges from —300 to —10
HU [10]. A smaller negative number (higher absolute
number) is indicative of a lower radiodensity (e.g., —100 is
a smaller negative number and indicate a lower radio-
density than —90HU). Lower abdominal subcutaneous
(SAT) and visceral (VAT) adipose tissue CT radiodensities
are thought to reflect increased lipid deposition, decreased
tissue vascularity, a lower tissue blood flow rate [11], a
lower mitochondrial density [12], low-grade systemic
inflammation and an unfavorable metabolic state [13].

Adipose tissue serves as the storage site for energy-
rich triglycerides, and has the capacity to expand to
accommodate excess energy [14]. The expansion of
femoral SAT mass may play a protective metabolic role
(i.e. buffering cardiovascular disease and diabetes risk
[15]) especially when the tissue delivery of dietary and
endogenous fatty acids is elevated. However, fat accu-
mulation in the abdominal SAT and VAT is associated
with metabolic abnormalities such as insulin resistance,
hyperglycemia, hypertension, and dyslipidemia [16].
Overall, this suggests that the lipid storage profile may
play alternative metabolic roles between different adi-
pose compartments.

Bariatric surgery has shown to be of value to achieve
marked and sustained weight loss as well as diabetes
resolution in morbidly obese individuals [17]. Previous
studies by us and others have shown that weight loss
following bariatric surgery improves insulin sensitivity in
key metabolic tissues [18—20], increases abdominal SAT
and VAT radiodensity [11], and is associated with clinical
improvements in circulating fatty acid levels, and serum
metabolic profiles [21]. However, an extensive non-
invasive evaluation of fat lipid content in both the
abdominal and femoral adipose tissue depots using CT
imaging and its relation to indices of systemic metabolism
has not been performed in morbidly obese individuals
undergoing bariatric surgery.

We hypothesized that low adipose tissue CI-
radiodensity is associated with a poorer metabolic profile
prior to bariatric surgery. We also hypothesized that adi-
pose tissue radiodensities increase after surgery and
correlate with improved systemic metabolism. Hence, the

present longitudinal study aimed to assess the association
between abdominal and femoral adipose tissue radio-
densities, and circulating metabolite profile in morbidly
obese individuals before and after bariatric surgery.

Methods
Subjects and study design

The study included 23 morbidly obese adult women (all
>18 years) recruited from a randomized prospective three-
center study comparing laparoscopic Roux-en-Y gastric
bypass (RYGB) vs. sleeve gastrectomy for the treatment of
morbid obesity [22]. In addition, 15 age-matched, non-
obese non-diabetic women served as controls. Prior to the
surgical intervention, 10 obese patients had diabetes, and
13 were nondiabetic. Among nondiabetic patients, 4 had
impaired glucose tolerance and 1 had impaired fasting
glucose [23].

Nine of the 10 diabetic subjects were treated with
either metformin or DPP-IV inhibitors or a combination
of these medications, and one was controlled by a dietary
regiment. All glucose-lowering treatments were with-
held for a minimum of 24 h and a maximum of 72 h
before the imaging studies. Clinical screening and
physical examination, anthropometric measurements
and blood-based biochemical analyses including 2-h oral
glucose tolerance test (OGTT) were performed in the
study participants as previously described [24]. During
the OGTT, samples of plasma glucose, plasma insulin and
C-peptide were collected at a 30-min interval for 2 h (i.e.
0, 30, 60, 90, 120 min). The morbidly obese subjects
followed a 4-week very low-calorie diet (VLCD, 800 kcal/
day), which was discontinued a day before bariatric
surgery procedures [24]. The post-procedural evaluation
phase was conducted at six months, and the anthropo-
metric, metabolic studies were repeated similarly as in
the baseline phase. The 6-month time-point was chosen
as the weight loss is most prominent during the first six
months after surgery [24] This study has been approved
by the local ethics committee of the Hospital District of
Southwest Finland and was performed in compliance
with the Declaration of Helsinki. All the study subjects
provided written informed consent.

CT image acquisition and processing

Patients underwent CT scans after an overnight fast and
at room temperature. The CT imaging was performed
before the start of the VLDL. The imaging was performed
using a Discovery VCT (VCT) PET/CT system (General
Electric Medical Systems, Milwaukee, WI, USA). The CT
system consists of a multislice CT scanner with a large
70-cm patient port and CT coverage up to 64 slices,
40 mm axial coverage and 0.625 mm slice thickness [25].
High resolution CT imaging was performed at a tube
voltage of 120 kVp and a variable current of approxi-
mately 50 mA as previously described [25].
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Data analysis and calculations

The adipose tissue radiodensity analysis was performed
using Carimas version 2.9 (http://turkupetcentre.fi
carimas/download/). Forty-seven slices of the CT-scans
were used for the analysis of both the abdominal and
femoral regions. The attenuation threshold value of —300
to —10HU was used to define the adipose tissue regions
[10]. The mean pixel attenuation within the defined areas
of the combined 47 slices was calculated to represent ad-
ipose tissue radiodensity (HU) [26].

Abdominal adipose CT-radiodensity measurement. The
abdominal CT imaging covered regions from the 12th
thoracic to 1st sacral (T12 - S1) vertebrae [27]. Subcu-
taneous adipose tissue in this region was outlined whilst
avoiding skin and abdominal skeletal muscles. The
abdominal VAT comprised an average of both the inde-
pendent intraperitoneal and extraperitoneal fat depots
separated by anatomical references such as the kidneys,
ascending and descending colon [28]. A single operator
performed the abdominal adipose CT radiodensity analysis
and the values obtained were similar to values previously
reported by Torriani et al,, [11].

Femoral subcutaneous adipose CT radiodensity measure-
ment. A total of 47 slices covering the length of 15 cm in
the mid-section of the thigh was used for the femoral SAT
HU analysis. The subcutaneous fat of both legs was out-
lined whilst avoiding skin and skeletal muscles as previ-
ously performed on PET/MRI scans [18]. The average CT-
radiodensity values of the combined slices for both legs
were then calculated. The femoral SAT CT radiodensity
analysis was performed by two independent operators.
The intraclass correlation coefficient value for the two
measurements was 0.82.

Distribution of body fat

Abdominal and femoral fat volumes were calculated from
a whole body MRI scans (Gyroscan Intera CV Nova Dual;
Philips, Amsterdam, the Netherlands) using the SliceO-
matic Tomovision software (version 4.3) as previously re-
ported [29].

Biochemical and immunological analyses

Plasma glucose concentrations were measured in dupli-
cate using the glucose oxidase method (Analox GM7 or
GM9 Analox Instruments Ltd., London, UK). Glycosylated
hemoglobin was determined by HPLC (Variant II; Bio-
Rad, Herculas, CA). Serum insulin was determined by
time-resolved immunofluorometric assay (AutoDELFIA,
PerkinElmer Life and Analytical Sciences). Serum high-
sensitivity C-reactive protein was analyzed with the
sandwich immunoassay method using an Innotrac Aio1l
immunoanalyzer (Innotrac Diagnostics, Turku, Finland).
The C-peptide in plasma was measured with an elec-
trochemiluminescence immunoassay (ECLIA) on cobas
€602 automatic analyzer (Roche Diagnostics, Mannheim,
Germany).

Metabolomics

The procedure for the serum metabolomics profiling
analysis has been previously described [30]. Briefly,
fasting serum samples were stored at —70 °C. Low mo-
lecular weight metabolites including lipoprotein and
lipid extracts including serum cholesterol (Serum-C),
triglycerides (Serum-TG), amino acids such as branch-
chained amino acids (BCAAs: isoleucine, leucine and
valine), and aromatic amino acids (AAA) (phenylalanine
and tyrosine), glycine and glycoprotein acetyls (GlycA)
were measured using a high-throughput nuclear mag-
netic resonance metabolomic platform [30].

Statistical analysis

Continuous variables are expressed as mean + SD. The
variables that were not normally distributed were loga-
rithmically transformed prior to the analyses. Correla-
tions between variables were evaluated through the
Pearson’s biserial correlation coefficient. The percentage
change concerning continuous variables was calculated
for the pre- and the post-surgery values. The percentage
change for the continuous variable was calculated as
post-minus pre-surgery value divided by the pre-surgery
value and the result was expressed as a percentage. A
positive value indicated percentage increase, whereas a
negative result represented a decrease in the value of the
variable after the surgical procedure. Paired-samples t-
tests were used to compare the means of the measured
variables between the obese patients pre- and post-
bariatric surgery, while independent-samples t-tests
were performed to compare continuous variables be-
tween the obese and control groups. One-way analysis of
variance (ANOVA) was used for the comparison of radi-
odensities and fat volumes in abdominal SAT, VAT and
femoral SAT depots. Lastly, we adjusted for the BMI to
test whether the association between SAT radiodensity
and the depot mass was independent of this variable. All
analyses were performed using SPSS (IBM Corp. Released
2013. IBM SPSS Statistics for Windows, Version 22.0.
Armonk, New York, IBM Corp). A p-value < 0.05 was
considered statistically significant.

Results

Adipose tissue volumes, CT-radiodensities and metabolite
praofiles in obese patients and non-obese controls

Major aspects of the subject characteristics, including
measures of adiposity such as body weight, BMI, waist
circumference, depot fat volumes, glycemic and lipid
parameters in obese patients and non-obese controls
have been previously published [18,22] and are sum-
marized in Table 1. In obese patients, abdominal SAT
volume was significantly higher as compared with
abdominal VAT or femoral SAT volumes (Table 1,
p < 0.001 by ANOVA). In contrast, CT-radiodensity was
higher in femoral SAT than in abdominal SAT or VAT


http://turkupetcentre.fi/carimas/download/
http://turkupetcentre.fi/carimas/download/

2366

P. Dadson et al.

(Table 1, p < 0.001 by ANOVA). Compared to the lean
controls, the obese had significantly lower abdominal
SAT and VAT, but higher femoral SAT radiodensity values
(Table 1, Fig. 1). Levels of serum triglycerides, and ApoB/
ApoAT1 ratio were significantly higher in the obese pa-
tients as compared to the non-obese healthy controls
(Table 2). Similarly, essential amino acids and their de-
rivatives such as the BCAAs, phenylalanine, and GlycA
were significantly higher in obese patients when
compared with non-obese controls (Table 2).
Abdominal SAT CT-radiodensity was negatively
correlated also with markers of obesity such as BMI
(r = -0.55, p = 0.01) and waist circumference
(r = —0.80, p < 0.001) (Fig. 2). In contrast, femoral SAT
radiodensity was positively correlated with waist
circumference (r = 0.44, p = 0.033) (Fig. 2). Abdominal
SAT CT-radiodensity correlated with abdominal SAT mass
both in the unadjusted (r = —0.72, p < 0.001) and after
BMI-adjusted (r = —0.58, p = 0.005) analysis.

Increase in abdominal adipose tissue densities after
bariatric surgery associates with improved systemic
metabolism

Adiposity measures, adverse metabolic and inflamma-
tory indices decreased after bariatric surgery (Table 1).
However, serum lipid parameters remained unchanged
when compared to pre-procedural values (Table 1). The
CT-radiodensities of abdominal SAT and VAT depots
increased after surgery and the values were statistically
similar to those observed in the non-obese controls

Table 1 Anthropometric and clinical parameters of study subjects.

(Table 1, Fig. 1). The decrease in the absolute mass of
abdominal VAT was greater than SAT (Table 1, p < 0.001).
However, there was a difference in change in the den-
sities of abdominal SAT vs. VAT (Table 1). The density of
femoral SAT remained unchanged as compared to their
pre-surgery values (Table 1, Fig. 1). The profile of circu-
lating metabolites was also improved, as evidenced by
the decrements in levels of ApoB/ApoA1l, BCAAs, AAAs
and GlycA, and the increase levels of glycine compared to
the pre-surgery concentrations (Table 2).

To further explore the possible effect of surgery, we
calculated the change (post - pre-surgery) of the CT-
derived radiodensities, fat volumes, and serum metabo-
lite profiling values. There was a 39% reduction in
abdominal SAT mass, which significantly correlated with a
13% decrease in lipid content in the SAT depot (r = —0.63,
p = 0.002). The increase in CT-radiodensities of abdominal
SAT and VAT correlated negatively to the change in circu-
lating levels of leucine (r = -0.57, p = 0.005, and
r = —0.43, p = 0.039, respectively) (Fig. 3). Furthermore,
the change in abdominal SAT CT-radiodensity correlated
negatively with the change in GlycA (r = -0.46,
p = 0.028), and abdominal VAT CT-radiodensity correlated
negatively with ApoB/ApoA-I ratio levels (r = -0.48,
p = 0.020) (Fig. 3).

Discussion
This study shows that abdominal subcutaneous and

visceral adipose tissue CT-radiodensities are significantly
lower, and femoral adipose CT-radiodensity higher in

Controls (n = 15)

Obese surgery patients (n = 23)

Change (%) from #P-value within the

pre-surgery obese group

Pre-surgery Post-surgery

Age (years) 448 + 124 428 +9.6 434 +94 = =
Weight (kg) 61.8 + 7.1 1124 + 15.4*** 86.8 + 13.5"** —22.6 +6.2 <0.001
BMI (kg/m?) 226 +2.8 41.1 + 4.2 31.8 £ 13.5%** —22.6 +6.3 <0.001
Waist circumference (cm) 74.7 + 8.2 115.0 &+ 10.6*** 949 + 12.2%** —159 + 7.7 <0.001
Abdominal SAT (kg) 3.7+ 15 16.5 & 4.5*** 10.3 £ 4.2*** —38.6 + 16.7 <0.001
Abdominal VAT (kg) 0.8 +04 3.5 £ 1.3*** 1.9 + 1.03** —47.7 + 20.1 <0.001
Femoral SAT (kg) 59+ 1.8 13.5 + 3.8*** 9.3 + 3.6"** —-31.0 £ 13.2 <0.001
Abdominal SAT (HU) -97.7 + 171 —112.3 + 7.1*** -98.1 + 11.6 —-12.7 + 84 <0.001
Abdominal VAT (HU) —949 + 12.2 —111.9 + 6.8"** -101.2 £ 11.0 -9.3 £+ 10.7 0.001
Femoral SAT (HU) —107.1 £ 8.2 —97.9 + 10.6** —100.6 £+ 7.2* 49 + 15.0 0.177
Fasting glucose (mmol/L) 53 + 0.6 6.1 + 1.0** 54 +0.7 —113 +9.8 <0.001
Fasting insulin (mU/L) 53+35 13.1 £+ 8.4*** 8.5+5.9 —20.7 £ 57.8 <0.001
Fasting C-peptide (mmol/L) 0.6 + 0.2 1.1 £ 03" 0.8 & 3.5** —26.1 + 15.6 <0.001
2-h glucose (mmol/L) 56+ 1.2 8.4 £ 2.9"** 52+26 —36.7 +23.8 <0.001
HbAlc [(%), (mmol/mol)] 56 +03(375+34) 6.0+0.7(41.6 +73) 54+04(359+46) —-83+59 <0.001
FFA level (mmol/L) 0.55 + 0.17 0.80 + 0.22 0.76 + 0.17 1.7 £ 34.0 0.535
Triglycerides (mmol/L) 0.7 £ 0.3 1.2 + 04*** 1.1 + 0.5** —6.7 £ 364 0.321
Total cholesterol (mmol/L) 4.42 + 0.83 430 4+ 0.88 430 4+ 0.82 3.5+ 293 0.990
HDL-cholesterol (mmol/L) 1.8 + 0.4 1.2 £ 03" 1.4 + 03" 189 + 264 0.008
LDL-cholesterol (mmol/L) 2.4 + 0.7 2.5+ 0.8 244+ 0.7 1.5 £ 485 0.457
CRP (mg/L) 0.8 +1.0 4.0 + 3.5* 20+1.9 —53.1 + 42 <0.001

Continuous variables presented as mean + SD; SAT, subcutaneous fat; VAT, visceral adipose tissue; 2-h glucose, glucose levels 2 h after a
standardized (75 g) oral glucose tolerance test; HbAlc, glycated hemoglobin; FFA, free fatty acids; HDL, high and LDL, low-density lipoprotein
cholesterol; CRP, C-reactive protein; *P < 0.05, **P < 0.01, ***P < 0.001 vs. controls; #P < 0.05, pre-vs post-surgery comparison.
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Figure 1 Adipose tissue radiodensity in abdominal subcutaneous [A] and visceral fat [B], and femoral subcutaneous fat [C] in non-obese healthy
controls [plain bars], obese before [dark bars] and after surgery [gray bars]; *P < 0.05, * P < 0.01, * * +P < 0.001 obese vs controls; ***P < 0.001

obese before vs after surgery comparison.

Table 2 Serum metabolomics profiling in the study subjects.

Controls (n = 15)

Obese surgical patients

Change (%) from pre-surgery #P-value within obese group

(n = 23)

Pre-surgery Post-surgery
ApoB/ApoA-1 0.46 + 0.09 0.57 £0.13* 0.51+013 -86+17.7 0.020
Glycine (mmol/L) 0.26 + 0.1 0.26 + 0.05 0.29 £ 0.06 149 + 22.1 0.006
Isoleucine (mmol/L) 0.04 + 0.01 0.05 +£ 0.01** 0.04 £0.01 —14.5+21.1 0.001
Leucine (mmol/L) 0.06 + 0.01 0.07 £ 0.01* 0.06 +£0.01 -16.7 +14.9 <0.001
Valine (mmol/L) 0.15 + 0.03 0.17 £ 0.03** 0.14+0.03 -182 +15.1 <0.001
Phenylalanine (mmol/L) 0.06 + 0.01 0.07 £ 0.01** 0.06 +£0.01 -10.2 +13.3 0.001
Tyrosine (mmol/L) 0.04 + 0.01 0.05 + 0.01 0.04 £ 0.01 —4.7+259 0.132
GlycA (mmol/L) 1.13 £ 0.19 137 £ 0.14** 123 +0.15 -9.8+10.5 <0.001

Continuous variables presented as mean + SD; ApoB/ApoAl, ratio of apolipoprotein B to apolipoprotein A-I; GlycA, glycoprotein acetyls, mainly
al-acid glycoprotein; *P < 0.05, **P < 0.01, ***P < 0.001 vs. controls; #P < 0.05, pre-vs post-surgery comparison.

morbidly obese patients as compared to non-obese sub-
jects. Secondly, bariatric surgery decreases abdominal ad-
ipose lipid content in line with the improved metabolic
control and circulating metabolites in morbidly obese in-
dividuals. However, bariatric surgery had no effect on the
CT-radiodensity in the femoral subcutaneous area.

At baseline prior to surgery, we demonstrated an as-
sociation between adipose radiodensity and fat volume in
our obese population. Specifically, we found that abdom-
inal SAT was strongly correlated with depot mass, a finding
that has been previously noted in literature [11,31]. We
suggest that these observations may be attributed to the
increased size of existing adipocytes [32]. An earlier study
demonstrated that women with low abdominal adipose
CT-derived radiodensity were characterized by increased
adipose area as well as adipocyte hypertrophy [33].
Despite their higher femoral SAT mass, the radiodensity
was higher in the obese individuals compared to controls.
In the femoral SAT depot, the increasing lipid accumula-
tion confers cardiometabolic protection due to the lower
rate of lipolysis, and a greater sensitivity to insulin of ad-
ipocytes in this depot [34]. Also, femoral SAT has increased
lipoprotein lipase activity which facilitates lipid deposition
in adipocytes as well as stimulate the production of new
adipocytes [35]. It has also been suggested that the long-
term entrapment of circulating non-esterified fatty acids
in the newly formed adipocytes prevents non-adipose
tissue from excessive exposure to fatty acids [34].
Research shows that the major long chain fatty acid

constituent of an expanded femoral SAT is the mono-
unsaturated palmitoleic acid (C;gH300>), which is known
to promote beneficial blood lipid profile, insulin sensi-
tivity, and glycemic control [36].

The post-surgery increase in abdominal SAT and VAT
radiodensities and the parallel improvements in metabolic
biomarkers are similar to findings from a previously re-
ported study [11]. In this report, we further explore the as-
sociation between the post-surgery change in adipose
radiodensity with metabolomics-derived metabolic bio-
markers. We found that the increase in abdominal SAT and
VAT radiodensities was significantly correlated with de-
creases in systemic levels of leucine, ApoB/ApoA ratio, and
GlycA. It has been suggested that elevated levels leucine [37],
ApoB/ApoA-I ratio [38], and GlycA [39] are strongly corre-
lated with insulin resistance and metabolic syndrome. Using
ultrasound measurements, Pontiroli et al. [40] demonstrated
that the loss of visceral fat area correlated with improve-
ment in metabolic variables after bariatric surgery. In addi-
tion, a previous systematic review and meta-analysis has
described a greater percentage loss of abdominal fat
regardless of the weight loss intervention [41]. These find-
ings provide further evidence that abdominal adipose tissue
radiodensity may provide beneficial information about
metabolic disease risk. It is noteworthy to mention that the
combined effect of weight loss from dietary restriction and
from bariatric surgery may have contributed to the observ-
able change in the abdominal adipose tissue densities radi-
odensities. Viljanen et al. [42] showed that 6 weeks after
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Figure 2 Pearson’s correlation coefficient between tissue radiodensity and circulating metabolites in the non-obese healthy control [A], obese
before [B], after [C]; SAT, subcutaneous adipose tissue, VAT, visceral adipose tissue; OGTT, glucose levels 2 h after a standardized oral glucose
tolerance test; HbAlc, glycated hemoglobin; FFA, free fatty acids; HDL, high density lipoprotein cholesterol; LDL, low density lipoprotein cholesterol;
CRP, C-reactive protein; ApoB/ApoA-I, ratio of apolipoprotein B to apolipoprotein A-I; GlycA, glycoprotein acetyls, mainly «1-acid glycoprotein;

VLCD, obese subjects recorded significant decrease in
abdominal SAT and VAT fat volume along with the change in
adipose tissue-specific metabolic profile.

Another important finding of this study was that the
radiodensity of femoral SAT was unchanged and remained
similar compared to the pre-surgery values despite signifi-
cant decrease in femoral SAT depot mass. A previous study
has shown that there are depot-specific differences in fat
mass expansion in response to overfeeding - hypertrophy in
abdominal SAT, and mainly hyperplasia in femoral SAT [43].
Moreover, it has been shown that lean individuals have
lower prevalence of hyperplasia as compared to obese sub-
jects [44], and that following weight loss a decrease in the
adipocyte numbers was not found in obese individuals [45].
On the contrary, following weight loss there is marked
decrease in the size of hypertrophic adipocytes [46]. Taken
together, our findings may further highlight the differences
in adipocyte behavior and regional fat distribution between
the abdominal and femoral SAT fat depots following weight
loss [47]. For the current study, there were no adipose bi-
opsies to ascertain the possible associations between the
post-bariatric surgery change in adipose CT radiodensity and
the resident adipocyte morphology and expandability in our
obese patients. Physiologically, femoral SAT is known to be
less metabolically active in terms of blood flow dynamics
and fatty acid metabolism as compared with the abdominal

SAT depot [15]. Therefore, the turnover is more robust in the
abdominal than in femoral fat depots [47]. Our data also
revealed that the capacity to preserve lipid content in the
femoral SAT may be a necessary requirement to achieve and
maintain healthy metabolic homeostasis in post-surgery
obese patients. Of significant note, our obese population
were still losing weight 6 months after the surgical inter-
vention as characterized by the lack of change in serum fatty
acids levels between the two study visits.

A strength of the current method was that the CT-derived
radiodensity measurement has been validated against ex-
vivo adipose tissue samples for the assessment of tissue lipid
content [48]. Our study has some limitations. Adipose lipid
content and tissue properties were measured indirectly
using computed tomography. We studied a relatively small
group of obese women patients with different metabolic
phenotypes (i.e. healthy, prediabetes, diabetes). Second, the
current data does not include biopsies as well as dietary
information and therefore could not be accounted for in the
analysis of the associations between fat radiodensities and
serum metabolites. Third, these results regarding femoral
SAT radiodensity cannot be generalized to men because of
the different estrogen/testosterone ratios, which are known
regulators of adiposity between fat depots. Fourth, even
though the presence of diabetes exerts an influence on
certain metabolic parameters, our exploration of the current
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2-hour glucose (mmol/L)
HbAlc (% , mmol/mol)
HDL (mmol/L)
CRP(mg/L)
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Figure 3 Pearson’s correlation coefficient of the change [(post-pre) surgery] in CT-derived tissue radiodensities and serum metabolites in obese
patients; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue; OGTT, glucose levels 2 h after a standardized oral glucose tolerance test;
HbA1c, glycated hemoglobin; HDL, high density cholesterol; CRP, C-reactive protein; ApoB/ApoA-I ratio, ratio of apolipoprotein B to apolipoprotein

A-I; GlycA, Glycoprotein acetyls, mainly «1-acid glycoprotein;

data did not show significant differences with respect to
baseline diabetes status and hence the obese patients were
combined for the analyses. Fifth, the morbidly obese patients
underwent two bariatric surgical procedures (sleeve and
gastric bypass), which inputs some heterogeneity in the ef-
fect of the surgery as a concept. Sixth, the pre-surgery CT
scans were conducted before VLCD and therefore we are
unable to quantify the contribution of VLCD to the observed
changes; however, weight loss due to VLCD was only 8%,
compared to the 23% weight loss due to surgery, and the
main goal of this study was to examine the relationships
between changes in adipose tissue compared to circulating
metabolites. Lastly, CT-radiodensity measurements also take
into account tissue intracellular water and blood retention as
well as the dead cells and other remnants of cellular com-
ponents [49] and should, therefore, not be conceptualized as
an unequivocal proxy to lipid content alone.

In conclusion, we showed that a higher femoral fat
radiodensity may be linked to the metabolic disorders in
morbid obesity. We further demonstrated that bariatric
surgery-induced weight loss does not affect the radio-
density of femoral subcutaneous adipose tissue. However,
the change in abdominal fat radiodensities may be linked to
the improved systemic metabolism in the obese patients

following bariatric surgery. Further studies involving larger
sample size and a combination of tissue radiodensity data
and tissue biopsies will be required to establish the direct
mechanism linking the changes in adipose radiodensities
and the improved metabolic health in obese patients after
bariatric surgery.
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