113 research outputs found
Machine Learning Outperforms Regression Analysis to Predict Next-Season Major League Baseball Player Injuries: Epidemiology and Validation of 13,982 Player-Years From Performance and Injury Profile Trends, 2000-2017
Background: Machine learning (ML) allows for the development of a predictive algorithm capable of imbibing historical data on a Major League Baseball (MLB) player to accurately project the player\u27s future availability.
Purpose: To determine the validity of an ML model in predicting the next-season injury risk and anatomic injury location for both position players and pitchers in the MLB.
Study Design: Descriptive epidemiology study.
Methods: Using 4 online baseball databases, we compiled MLB player data, including age, performance metrics, and injury history. A total of 84 ML algorithms were developed. The output of each algorithm reported whether the player would sustain an injury the following season as well as the injury\u27s anatomic site. The area under the receiver operating characteristic curve (AUC) primarily determined validation.
Results: Player data were generated from 1931 position players and 1245 pitchers, with a mean follow-up of 4.40 years (13,982 player-years) between the years of 2000 and 2017. Injured players spent a total of 108,656 days on the disabled list, with a mean of 34.21 total days per player. The mean AUC for predicting next-season injuries was 0.76 among position players and 0.65 among pitchers using the top 3 ensemble classification. Back injuries had the highest AUC among both position players and pitchers, at 0.73. Advanced ML models outperformed logistic regression in 13 of 14 cases.
Conclusion: Advanced ML models generally outperformed logistic regression and demonstrated fair capability in predicting publicly reportable next-season injuries, including the anatomic region for position players, although not for pitchers
Field Guide for the Geology of Central Park and New York City
Teachers guide for geology of Central Park. Supplement to: Jaret, S. J., et. al. (2021). Geology of Central Park, Manhattan, New York City, USA: New geochemical insights. Geological Society of America bulletin. https://doi.org/10.1130/2020.0061(02
SNEWS: The SuperNova Early Warning System
This paper provides a technical description of the SuperNova Early Warning
System (SNEWS), an international network of experiments with the goal of
providing an early warning of a galactic supernova.Comment: 25 pages, for New Journal of Physics Focus Issue on Neutrino Physic
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
CropPol: a dynamic, open and global database on crop pollination
Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved
Terrestrial very-long-baseline atom interferometry: Workshop summary
This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more kilometer--scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions
- …