35 research outputs found
Plant diversity, CO2 and N influence inorganic and organic N leaching in grasslands
In nitrogen (N)-limited systems, the potential to sequester carbon depends on the balance between N inputs and losses as well as on how efficiently N is used, yet little is known about responses of these processes to changes in plant species richness, atmospheric CO2 concentration ([CO2]), and N deposition. We examined how plant species richness (1 or 16 species), elevated [CO2] (ambient or 560 ppm), and inorganic N addition (0 or 4 g·m−2·yr−1) affected ecosystem N losses, specifically leaching of dissolved inorganic N (DIN) and organic N (DON) in a grassland field experiment in Minnesota, USA. We observed greater DIN leaching below 60 cm soil depth in the monoculture plots (on average 1.8 and 3.1 g N·m−2·yr−1 for ambient N and N-fertilized plots respectively) than in the 16-species plots (0.2 g N·m−2·yr−1 for both ambient N and N-fertilized plots), particularly when inorganic N was added. Most likely, loss of complementary resource use and reduced biological N demand in the monoculture plots caused the increase in DIN leaching relative to the high-diversity plots. Elevated [CO2] reduced DIN concentrations under conditions when DIN concentrations were high (i.e., in N-fertilized and monoculture plots). Contrary to the results for DIN, DON leaching was greater in the 16-species plots than in the monoculture plots (on average 0.4 g N·m−2·yr−1 in 16-species plots and 0.2 g N·m−2·yr−1 in monoculture plots). In fact, DON dominated N leaching in the 16-species plots (64% of total N leaching as DON), suggesting that, even with high biological demand for N, substantial amounts of N can be lost as DON. We found no significant main effects of elevated [CO2] on DIN or DON leaching; however, elevated [CO2] reduced the positive effect of inorganic N addition on DON leaching, especially during the second year of observation. Our results suggest that plant species richness, elevated [CO2], and N deposition alter DIN loss primarily through changes in biological N demand. DON losses can be as large as DIN loss but are more sensitive to organic matter production and turnover.Dijkstra, Feike A; West, Jason B; Hobbie, Sarah E; Reich, Peter B; Trost, Jared. (2007). Plant diversity, CO2 and N influence inorganic and organic N leaching in grasslands. Retrieved from the University Digital Conservancy, 10.1890/06-0733
Study protocol of physical activity and sedentary behaviour measurement among schoolchildren by accelerometry - Cross-sectional survey as part of the ENERGY-project
ABSTRACT: BACKGROUND: Physical activity and sedentary behaviour among children should be measured accurately in order to investigate their relationship with health. Accelerometry provides objective and accurate measurement of body movement, which can be
Nitrogen limitation constrains sustainability of ecosystem response to CO2
Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, it is unknown whether CO2-induced stimulation of plant growth and biomass accumulation will be sustained or whether limited nitrogen (N) availability constrains greater plant growth in a CO2-enriched world(1-9). Here we show, after a six-year field study of perennial grassland species grown under ambient and elevated levels of CO2 and N, that low availability of N progressively suppresses the positive response of plant biomass to elevated CO2. Initially, the stimulation of total plant biomass by elevated CO2 was no greater at enriched than at ambient N supply. After four to six years, however, elevated CO2 stimulated plant biomass much less under ambient than enriched N supply. This response was consistent with the temporally divergent effects of elevated CO2 on soil and plant N dynamics at differing levels of N supply. Our results indicate that variability in availability of soil N and deposition of atmospheric N are both likely to influence the response of plant biomass accumulation to elevated atmospheric CO2. Given that limitations to productivity resulting from the insufficient availability of N are widespread in both unmanaged and managed vegetation(5,7-9), soil N supply is probably an important constraint on global terrestrial responses to elevated CO2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62769/1/nature04486.pd
Recommended from our members
Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states
Accurate diagnosis of mild cognitive impairment (MCI) before conversion to Alzheimer’s disease (AD) is invaluable for patient treatment. Many works showed that MCI and AD affect functional and structural connections between brain regions as well as the shape of cortical regions. However, ‘shape connections’ between brain regions are rarely investigated -e.g., how morphological attributes such as cortical thickness and sulcal depth of a specific brain region change in relation to morphological attributes in other regions. To fill this gap, we unprecedentedly design morphological brain multiplexes for late MCI/AD classification. Specifically, we use structural T1-w MRI to define morphological brain networks, each quantifying similarity in morphology between different cortical regions for a specific cortical attribute. Then, we define a brain multiplex where each intra-layer represents the morphological connectivity network of a specific cortical attribute, and each inter-layer encodes the similarity between two consecutive intra-layers. A significant performance gain is achieved when using the multiplex architecture in comparison to other conventional network analysis architectures. We also leverage this architecture to discover morphological connectional biomarkers fingerprinting the difference between late MCI and AD stages, which included the right entorhinal cortex and right caudal middle frontal gyrus
Recommended from our members
Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s Disease using structural MR and FDG-PET images
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized that combining multiple different image modalities providing complementary information could help improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1–3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% specificity in classifying non-demented controls improving upon results in published literature
Recommended from our members
The impact of PICALM genetic variations on reserve capacity of posterior cingulate in AD continuum
Phosphatidylinositolbinding clathrin assembly protein (PICALM) gene is one novel genetic player associated with late-onset Alzheimer’s disease (LOAD), based on recent genome wide association studies (GWAS). However, how it affects AD occurrence is still unknown. Brain reserve hypothesis highlights the tolerant capacities of brain as a passive means to fight against neurodegenerations. Here, we took the baseline volume and/or thickness of LOAD-associated brain regions as proxies of brain reserve capacities and investigated whether PICALM genetic variations can influence the baseline reserve capacities and the longitudinal atrophy rate of these specific regions using data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. In mixed population, we found that brain region significantly affected by PICALM genetic variations was majorly restricted to posterior cingulate. In sub-population analysis, we found that one PICALM variation (C allele of rs642949) was associated with larger baseline thickness of posterior cingulate in health. We found seven variations in health and two variations (rs543293 and rs592297) in individuals with mild cognitive impairment were associated with slower atrophy rate of posterior cingulate. Our study provided preliminary evidences supporting that PICALM variations render protections by facilitating reserve capacities of posterior cingulate in non-demented elderly
Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images
Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease
Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients
Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification
Effects of perennial and annual vegetation on a soil water balance and groundwater recharge.
University of Minnesota M.S. thesis. June 2010. Major: Water Resources Science. Advisor: Dr. John L. Nieber. 1 computer file (PDF); ix, 157 pages, appendices 1-4. Ill. (some col.)The movement of land applied fertilizers, pesticides, and other agricultural chemicals from land surface to groundwater is a major environmental concern, especially in regions of coarse textured soils with shallow unconfined aquifers. A replicated field experiment was conducted on the Anoka Sand Plain, Minnesota, to examine the effects of perennial and annual vegetative cover on the movement of water through the unsaturated zone to groundwater. A Darcian analysis of soil water flow, water table hydrograph analysis, and chemical analysis of a bromide tracer in pore water in the unsaturated and saturated zones were utilized to estimate recharge rates and amounts to a shallow unconfined aquifer beneath four land cover types: corn (Zea mays), well-established prairie, newly-established hay, and bare ground. Soil water storage and precipitation were measured directly. Evapotranspiration estimates were determined by difference in the other water balance terms. Prairie soils to 125 cm were maximally drier than corn by mid-July each season due to greater early season ET demands by prairie than corn, with the maximum difference in soil water storage being 6.3 cm. Hay, prairie, corn, and bare ground recharge estimates from 6/3/2008 through 12/31/2009 were 31.6 +/- 4.5 cm, 37.9 +/- 3.3 cm, 40.2 +/- 3.4 cm, and 43.7 +/- 6.8 cm representing 28 %, 33%, 35%, and 39% of precipitation, respectively. Piston flow model estimates of residence time in the upper 225 cm of the soil profile were 312, 410, 352, and 318 days for hay, prairie, corn, and bare ground respectively. Bromide mass loss as determined for soil pore water 160 cm below land surface in one continuously monitored plot of each treatment resulted in 0.7%, 34%, 34%, and 100% of applied bromide leaching in prairie, hay, corn, and bare ground plots respectively. Peak bromide concentrations in prairie soil water were marginally significantly lower than all other treatments. Bromide was detected in the groundwater of all five replicate plots for hay, bare ground, and corn treatments, but only detected in two of five prairie replicate plots. Results indicate that on coarse soils, well established annually harvested perennial prairies have the potential for reducing inputs of land applied chemicals to groundwater relative to corn through slight reductions in recharge and reductions in solute transport
A Direct-Push Freezing Core Barrel for Sampling Unconsolidated Subsurface Sediments and Adjacent Pore Fluids
Contaminants passing through the unsaturated zone can undergo changes in narrow reaction zones upon reaching saturated sediments. Understanding these reactions requires sampling of sediment together with adjacent water and microbes in a manner that preserves in situ redox conditions. Use of a basket-type core catcher for saturated, noncohesive sediments results in redistribution or loss of fluids during sample retrieval. Previously developed sample-freezing drive shoes for hollow-stem auger drilling rigs lessened fluid redistribution and retained all material that entered the core barrel in noncohesive sediment cores by freezing the base of the core with liquid CO. This technology has not previously been compatible with direct-push rigs that are commonly used for contaminated site assessments. Here, we describe a freezing core barrel designed for direct-push rigs that is compatible with commercially available tool strings. The device can be used interchangeably with unsaturated-zone direct-push tool strings, enabling core collection for studies of contaminant transport and transformation spanning unsaturated to saturated profiles. In all 10 attempts during testing near Bemidji, MN, the device froze a 10- to 15-cm (4–6-in) plug that retained fluids and sediments in a 1.2-m (4-ft)-long, 5.0-cm (2.0-in)-diameter polyvinyl chloride (PVC) sleeve. Cores were collected from variably saturated sediments spanning the capillary fringe through the upper 2 m of the saturated zone in sandy glacial outwash sediments. The median recovery was 81% of the drive length, similar to a sample-freezing drive shoe developed for a wire-line piston core sampler operated with a hollow-stem auger drill rig