11 research outputs found
Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction
<p>Abstract</p> <p>Background</p> <p>We have shown that pulmonary exposure to fine particulate matter (PM) impairs endothelium dependent dilation in systemic arterioles. Ultrafine PM has been suggested to be inherently more toxic by virtue of its increased surface area. The purpose of this study was to determine if ultrafine PM (or nanoparticle) inhalation produces greater microvascular dysfunction than fine PM. Rats were exposed to fine or ultrafine TiO<sub>2 </sub>aerosols (primary particle diameters of ~1 ÎĽm and ~21 nm, respectively) at concentrations which do not alter bronchoalveolar lavage markers of pulmonary inflammation or lung damage.</p> <p>Results</p> <p>By histopathologic evaluation, no significant inflammatory changes were seen in the lung. However, particle-containing macrophages were frequently seen in intimate contact with the alveolar wall. The spinotrapezius muscle was prepared for in vivo microscopy 24 hours after inhalation exposures. Intraluminal infusion of the Ca<sup>2+ </sup>ionophore A23187 was used to evaluate endothelium-dependent arteriolar dilation. In control rats, A23187 infusion produced dose-dependent arteriolar dilations. In rats exposed to fine TiO<sub>2</sub>, A23187 infusion elicited vasodilations that were blunted in proportion to pulmonary particle deposition. In rats exposed to ultrafine TiO<sub>2</sub>, A23187 infusion produced arteriolar constrictions or significantly impaired vasodilator responses as compared to the responses observed in control rats or those exposed to a similar pulmonary load of fine particles.</p> <p>Conclusion</p> <p>These observations suggest that at equivalent pulmonary loads, as compared to fine TiO<sub>2</sub>, ultrafine TiO<sub>2 </sub>inhalation produces greater remote microvascular dysfunction.</p
Multi-instrument assessment of fine and ultrafine titanium dioxide aerosols
The measurement of fine (diameter: 100 nanometers–2.5 micrometers) and ultrafine (UF: 2) particles is instrument dependent. Differences in measurements exist between toxicological and field investigations for the same exposure metric such as mass, number, or surface area because of variations in instruments used, operating parameters, or particle-size measurement ranges. Without appropriate comparison, instrument measurements create a disconnect between toxicological and field investigations for a given exposure metric. Our objective was to compare a variety of instruments including multiple metrics including mass, number, and surface area (SA) concentrations for assessing different concentrations of separately aerosolized fine and UF TiO2 particles. The instruments studied were (1) DustTrak™ DRX, (2) personal DataRAMs™ (PDR), (3) GRIMMTM, and (4) diffusion charger (DC). Two devices of each field-study instrument (DRX, PDR, GRIMM, and DC) were used to measure various metrics while adjusting for gravimetric mass concentrations of fine and UF TiO2 particles in controlled chamber tests. An analysis of variance (ANOVA) was used to apportion the variance to inter-instrument (between different instrument-types), inter-device (within instrument), and intra-device components. Performance of each instrument-device was calculated using root mean squared error compared to reference methods: close-faced cassette and gravimetric analysis for mass and scanning mobility particle sizer (SMPS) real-time monitoring for number and SA concentrations. Generally, inter-instrument variability accounted for the greatest (62.6% or more) source of variance for mass, and SA-based concentrations of fine and UF TiO2 particles. However, higher intra-device variability (53.7%) was observed for number concentrations measurements with fine particles compared to inter-instrument variability (40.8%). Inter-device variance range(0.5–5.5%) was similar for all exposure metrics. DRX performed better in measuring mass closer to gravimetric than PDRs for fine and UF TiO2. Number concentrations measured by GRIMMs and SA measurements by DCs were considerably (40.8–86.9%) different from the reference (SMPS) method for comparable size ranges of fine and UF TiO2. This information may serve to aid in interpreting assessments in risk models, epidemiologic studies, and development of occupational exposure limits, relating to health effect endpoints identified in toxicological studies considering similar instruments evaluated in this study.</p
Biological effects of diesel exhaust inhalation. III cardiovascular function
Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.</p