2,226 research outputs found
Interhemispheric claustral circuits coordinate sensory and motor cortical areas that regulate exploratory behaviors
The claustrum has a role in the interhemispheric transfer of certain types of sensorimotor information. Whereas the whisker region in rat motor (M1) cortex sends dense projections to the contralateral claustrum, the M1 forelimb representation does not. The claustrum sends strong ipsilateral projections to the whisker regions in M1 and somatosensory (S1) cortex, but its projections to the forelimb cortical areas are weak. These distinctions suggest that one function of the M1 projections to the contralateral claustrum is to coordinate the cortical areas that regulate peripheral sensor movements during behaviors that depend on bilateral sensory acquisition. If this hypothesis is true, then similar interhemispheric circuits should interconnect the frontal eye fields (FEF) with the contralateral claustrum and its network of projections to vision-related cortical areas. To test this hypothesis, anterograde and retrograde tracers were placed in physiologically-defined parts of the FEF and primary visual cortex (V1) in rats. We observed dense FEF projections to the contralateral claustrum that terminated in the midst of claustral neurons that project to both FEF and V1. While the FEF inputs to the claustrum come predominantly from the contralateral hemisphere, the claustral projections to FEF and V1 are primarily ipsilateral. Detailed comparison of the present results with our previous studies on somatomotor claustral circuitry revealed a well-defined functional topography in which the ventral claustrum is connected with visuomotor cortical areas and the dorsal regions are connected with somatomotor areas. These results suggest that subregions within the claustrum play a critical role in coordinating the cortical areas that regulate the acquisition of modality-specific sensory information during exploration and other behaviors that require sensory attention
Recommended from our members
Momentum Spectra of Charged Pions Produced in Proton-ProtonInteractions between 13 and 28.5 GeV/c
Proton-proton interactions with four or more charged particles in the final state are studied over a range of incident momenta between 13 and 28.5 GeV/c. Topology cross sections are presented. The center-of-mass momentum distributions of {pi}{sup +} and {pi}{sup -} are determined and are successfully parameterized. The {pi}{sup +} and {pi}{sup -} momentum spectra are found to have approximately the same shape. Multiple fireball production is not required by our data
On the Morphology and Chemical Composition of the HR 4796A Debris Disk
[abridged] We present resolved images of the HR 4796A debris disk using the
Magellan adaptive optics system paired with Clio-2 and VisAO. We detect the
disk at 0.77 \microns, 0.91 \microns, 0.99 \microns, 2.15 \microns, 3.1
\microns, 3.3 \microns, and 3.8 \microns. We find that the deprojected center
of the ring is offset from the star by 4.761.6 AU and that the deprojected
eccentricity is 0.060.02, in general agreement with previous studies. We
find that the average width of the ring is 14, also comparable to
previous measurements. Such a narrow ring precludes the existence of
shepherding planets more massive than \about 4 \mj, comparable to hot-start
planets we could have detected beyond \about 60 AU in projected separation.
Combining our new scattered light data with archival HST/STIS and HST/NICMOS
data at \about 0.5-2 \microns, along with previously unpublished Spitzer/MIPS
thermal emission data and all other literature thermal data, we set out to
constrain the chemical composition of the dust grains. After testing 19
individual root compositions and more than 8,400 unique mixtures of these
compositions, we find that good fits to the scattered light alone and thermal
emission alone are discrepant, suggesting that caution should be exercised if
fitting to only one or the other. When we fit to both the scattered light and
thermal emission simultaneously, we find mediocre fits (reduced chi-square
\about 2). In general, however, we find that silicates and organics are the
most favored, and that water ice is usually not favored. These results suggest
that the common constituents of both interstellar dust and solar system comets
also may reside around HR 4796A, though improved modeling is necessary to place
better constraints on the exact chemical composition of the dust.Comment: Accepted to ApJ on October 27, 2014. 21 pages, 12 figures, 4 table
Genetics Ignite Focus on Microglial Inflammation in Alzheimer\u27s Disease
In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer\u27s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD
Magnetic Tunnel Junction Random Number Generators Applied to Dynamically Tuned Probability Trees Driven by Spin Orbit Torque
Perpendicular magnetic tunnel junction (pMTJ)-based true-random number
generators (RNG) can consume orders of magnitude less energy per bit than CMOS
pseudo-RNG. Here, we numerically investigate with a macrospin
Landau-Lifshitz-Gilbert equation solver the use of pMTJs driven by spin-orbit
torque to directly sample numbers from arbitrary probability distributions with
the help of a tunable probability tree. The tree operates by dynamically
biasing sequences of pMTJ relaxation events, called 'coinflips', via an
additional applied spin-transfer-torque current. Specifically, using a single,
ideal pMTJ device we successfully draw integer samples on the interval 0,255
from an exponential distribution based on p-value distribution analysis. In
order to investigate device-to-device variations, the thermal stability of the
pMTJs are varied based on manufactured device data. It is found that while
repeatedly using a varied device inhibits ability to recover the probability
distribution, the device variations average out when considering the entire set
of devices as a 'bucket' to agnostically draw random numbers from. Further, it
is noted that the device variations most significantly impact the highest level
of the probability tree, iwth diminishing errors at lower levels. The devices
are then used to draw both uniformly and exponentially distributed numbers for
the Monte Carlo computation of a problem from particle transport, showing
excellent data fit with the analytical solution. Finally, the devices are
benchmarked against CMOS and memristor RNG, showing faster bit generation and
significantly lower energy use.Comment: 10 pages, 8 figures, 2 table
Airborne electromagnetic imaging of discontinuous permafrost
The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to stream flow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ~1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ~4 million years and the configuration of permafrost to depths of ~100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface – groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past 1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments
Recommended from our members
Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
Reduced-complexity climate models (RCMs) are critical in the policy and decision making space, and are directly used within multiple Intergovernmental Panel on Climate Change (IPCC) reports to complement the results of more comprehensive Earth system models. To date, evaluation of RCMs has been limited to a few independent studies. Here we introduce a systematic evaluation of RCMs in the form of the Reduced Complexity Model Intercomparison Project (RCMIP). We expect RCMIP will extend over multiple phases, with Phase 1 being the first. In Phase 1, we focus on the RCMs' global-mean temperature responses, comparing them to observations, exploring the extent to which they emulate more complex models and considering how the relationship between temperature and cumulative emissions of CO2 varies across the RCMs. Our work uses experiments which mirror those found in the Coupled Model Intercomparison Project (CMIP), which focuses on complex Earth system and atmosphere–ocean general circulation models. Using both scenario-based and idealised experiments, we examine RCMs' global-mean temperature response under a range of forcings. We find that the RCMs can all reproduce the approximately 1 ∘C of warming since pre-industrial times, with varying representations of natural variability, volcanic eruptions and aerosols. We also find that RCMs can emulate the global-mean temperature response of CMIP models to within a root-mean-square error of 0.2 ∘C over a range of experiments. Furthermore, we find that, for the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP)-based scenario pairs that share the same IPCC Fifth Assessment Report (AR5)-consistent stratospheric-adjusted radiative forcing, the RCMs indicate higher effective radiative forcings for the SSP-based scenarios and correspondingly higher temperatures when run with the same climate settings. In our idealised setup of RCMs with a climate sensitivity of 3 ∘C, the difference for the ssp585–rcp85 pair by 2100 is around 0.23∘C(±0.12 ∘C) due to a difference in effective radiative forcings between the two scenarios. Phase 1 demonstrates the utility of RCMIP's open-source infrastructure, paving the way for further phases of RCMIP to build on the research presented here and deepen our understanding of RCMs
- …