2,226 research outputs found

    Interhemispheric claustral circuits coordinate sensory and motor cortical areas that regulate exploratory behaviors

    Get PDF
    The claustrum has a role in the interhemispheric transfer of certain types of sensorimotor information. Whereas the whisker region in rat motor (M1) cortex sends dense projections to the contralateral claustrum, the M1 forelimb representation does not. The claustrum sends strong ipsilateral projections to the whisker regions in M1 and somatosensory (S1) cortex, but its projections to the forelimb cortical areas are weak. These distinctions suggest that one function of the M1 projections to the contralateral claustrum is to coordinate the cortical areas that regulate peripheral sensor movements during behaviors that depend on bilateral sensory acquisition. If this hypothesis is true, then similar interhemispheric circuits should interconnect the frontal eye fields (FEF) with the contralateral claustrum and its network of projections to vision-related cortical areas. To test this hypothesis, anterograde and retrograde tracers were placed in physiologically-defined parts of the FEF and primary visual cortex (V1) in rats. We observed dense FEF projections to the contralateral claustrum that terminated in the midst of claustral neurons that project to both FEF and V1. While the FEF inputs to the claustrum come predominantly from the contralateral hemisphere, the claustral projections to FEF and V1 are primarily ipsilateral. Detailed comparison of the present results with our previous studies on somatomotor claustral circuitry revealed a well-defined functional topography in which the ventral claustrum is connected with visuomotor cortical areas and the dorsal regions are connected with somatomotor areas. These results suggest that subregions within the claustrum play a critical role in coordinating the cortical areas that regulate the acquisition of modality-specific sensory information during exploration and other behaviors that require sensory attention

    On the Morphology and Chemical Composition of the HR 4796A Debris Disk

    Get PDF
    [abridged] We present resolved images of the HR 4796A debris disk using the Magellan adaptive optics system paired with Clio-2 and VisAO. We detect the disk at 0.77 \microns, 0.91 \microns, 0.99 \microns, 2.15 \microns, 3.1 \microns, 3.3 \microns, and 3.8 \microns. We find that the deprojected center of the ring is offset from the star by 4.76±\pm1.6 AU and that the deprojected eccentricity is 0.06±\pm0.02, in general agreement with previous studies. We find that the average width of the ring is 14−2+3^{+3}_{-2}%, also comparable to previous measurements. Such a narrow ring precludes the existence of shepherding planets more massive than \about 4 \mj, comparable to hot-start planets we could have detected beyond \about 60 AU in projected separation. Combining our new scattered light data with archival HST/STIS and HST/NICMOS data at \about 0.5-2 \microns, along with previously unpublished Spitzer/MIPS thermal emission data and all other literature thermal data, we set out to constrain the chemical composition of the dust grains. After testing 19 individual root compositions and more than 8,400 unique mixtures of these compositions, we find that good fits to the scattered light alone and thermal emission alone are discrepant, suggesting that caution should be exercised if fitting to only one or the other. When we fit to both the scattered light and thermal emission simultaneously, we find mediocre fits (reduced chi-square \about 2). In general, however, we find that silicates and organics are the most favored, and that water ice is usually not favored. These results suggest that the common constituents of both interstellar dust and solar system comets also may reside around HR 4796A, though improved modeling is necessary to place better constraints on the exact chemical composition of the dust.Comment: Accepted to ApJ on October 27, 2014. 21 pages, 12 figures, 4 table

    Genetics Ignite Focus on Microglial Inflammation in Alzheimer\u27s Disease

    Get PDF
    In the past five years, a series of large-scale genetic studies have revealed novel risk factors for Alzheimer\u27s disease (AD). Analyses of these risk factors have focused attention upon the role of immune processes in AD, specifically microglial function. In this review, we discuss interpretation of genetic studies. We then focus upon six genes implicated by AD genetics that impact microglial function: TREM2, CD33, CR1, ABCA7, SHIP1, and APOE. We review the literature regarding the biological functions of these six proteins and their putative role in AD pathogenesis. We then present a model for how these factors may interact to modulate microglial function in AD

    Magnetic Tunnel Junction Random Number Generators Applied to Dynamically Tuned Probability Trees Driven by Spin Orbit Torque

    Full text link
    Perpendicular magnetic tunnel junction (pMTJ)-based true-random number generators (RNG) can consume orders of magnitude less energy per bit than CMOS pseudo-RNG. Here, we numerically investigate with a macrospin Landau-Lifshitz-Gilbert equation solver the use of pMTJs driven by spin-orbit torque to directly sample numbers from arbitrary probability distributions with the help of a tunable probability tree. The tree operates by dynamically biasing sequences of pMTJ relaxation events, called 'coinflips', via an additional applied spin-transfer-torque current. Specifically, using a single, ideal pMTJ device we successfully draw integer samples on the interval 0,255 from an exponential distribution based on p-value distribution analysis. In order to investigate device-to-device variations, the thermal stability of the pMTJs are varied based on manufactured device data. It is found that while repeatedly using a varied device inhibits ability to recover the probability distribution, the device variations average out when considering the entire set of devices as a 'bucket' to agnostically draw random numbers from. Further, it is noted that the device variations most significantly impact the highest level of the probability tree, iwth diminishing errors at lower levels. The devices are then used to draw both uniformly and exponentially distributed numbers for the Monte Carlo computation of a problem from particle transport, showing excellent data fit with the analytical solution. Finally, the devices are benchmarked against CMOS and memristor RNG, showing faster bit generation and significantly lower energy use.Comment: 10 pages, 8 figures, 2 table

    Airborne electromagnetic imaging of discontinuous permafrost

    Get PDF
    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to stream flow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ~1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ~4 million years and the configuration of permafrost to depths of ~100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface – groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past 1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments
    • …
    corecore