17 research outputs found

    Enhancement Effect of Noble Metals on Manganese Oxide for the Oxygen Evolution Reaction

    No full text
    Catalysis and Surface Chemistr

    Enhancing the connection between computation and experiments in electrocatalysis

    No full text
    Combining computational and experimental methods is a powerful approach to understand the variables that govern catalyst performance and ultimately design improved materials. However, the effectiveness of this approach rests on the strength of the relationships between calculated parameters and experimental measurements. These relationships are complicated by the intricacy and dynamic behaviour of catalytic active sites, and by the non-trivial relationship between calculated reaction energetics and observed rates. In this Perspective, we highlight opportunities to enhance the connection between computation and experiment in electrocatalysis. These include measuring the intrinsic kinetic behaviour of catalysts, creating precise models for the active site and its environment, and forming clear relationships between calculated reaction energetics and observed rates. As experimental and computational methods continue to become more powerful, clear connections between the two will maximize their utility to guide the design of efficient and selective electrocatalysts.Catalysis and Surface Chemistr

    Development of Molybdenum Phosphide Catalysts for Higher Alcohol Synthesis from Syngas by Exploiting Support and Promoter Effects

    No full text
    Molybdenum phosphide (MoP) catalysts have recently attracted attention due to their robust methanol synthesis activity from CO/CO2. Synthesis strategies are used to steer MoP selectivity toward higher alcohols by investigating the promotion effects of alkali (K) and CO-dissociating (Co, Ni) and non-CO-dissociating (Pd) metals. A systematic study with transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy (XAS) showed that critical parameters governing the activity of MoP catalysts are P/Mo ratio and K loading, both facilitating MoP formation. The kinetic studies of mesoporous silica-supported MoP catalysts show a twofold role of K, which also acts as an electronic promoter by increasing the total alcohol selectivity and chain length. Palladium (Pd) increases CO conversion, but decreases alcohol chain length. The use of mesoporous carbon (MC) support has the most significant effect on catalyst performance and yields a KMoP/MC catalyst that ranks among the state-of-the-art in terms of selectivity to higher alcohols

    Development of Molybdenum Phosphide Catalysts for Higher Alcohol Synthesis from Syngas by Exploiting Support and Promoter Effects

    No full text
    Molybdenum phosphide (MoP) catalysts have recently attracted attention due to their robust methanol synthesis activity from CO/CO2. Synthesis strategies are used to steer MoP selectivity toward higher alcohols by investigating the promotion effects of alkali (K) and CO-dissociating (Co, Ni) and non-CO-dissociating (Pd) metals. A systematic study with transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy (XAS) showed that critical parameters governing the activity of MoP catalysts are P/Mo ratio and K loading, both facilitating MoP formation. The kinetic studies of mesoporous silica-supported MoP catalysts show a twofold role of K, which also acts as an electronic promoter by increasing the total alcohol selectivity and chain length. Palladium (Pd) increases CO conversion, but decreases alcohol chain length. The use of mesoporous carbon (MC) support has the most significant effect on catalyst performance and yields a KMoP/MC catalyst that ranks among the state-of-the-art in terms of selectivity to higher alcohols

    Revealing the Synergy between Oxide and Alloy Phases on the Performance of Bimetallic In-Pd Catalysts for COâ‚‚ Hydrogenation to Methanol

    No full text
    In2O3 has recently emerged as a promising catalyst for methanol synthesis from CO2. In this work, we present the promotional effect of Pd on this catalyst and investigate structure–performance relationships using in situ X-ray spectroscopy, ex situ characterization, and microkinetic modeling. Catalysts were synthesized with varying In:Pd ratios (1:0, 2:1, 1:1, 1:2, 0:1) and tested for methanol synthesis from CO₂/H₂ at 40 bar and 300 °C. In:Pd(2:1)/SiO₂ shows the highest activity (5.1 μmol MeOH/gInPds) and selectivity toward methanol (61%). While all bimetallic catalysts had enhanced catalytic performance, characterization reveals methanol synthesis was maximized when the catalyst contained both In–Pd intermetallic compounds and an indium oxide phase. Experimental results and density functional theory suggest the active phase arises from a synergy between the indium oxide phase and a bimetallic In–Pd particle with a surface enrichment of indium. We show that the promotion observed in the In–Pd system is extendable to non precious metal containing binary systems, in particular In–Ni, which displayed similar composition–activity trends to the In–Pd system. Both palladium and nickel were found to form bimetallic catalysts with enhanced methanol activity and selectivity relative to that of indium oxide

    A Highly Active Molybdenum Phosphide Catalyst for Methanol Synthesis from CO and CO<sub>2</sub>

    No full text
    Methanol is a major fuel and chemical feedstock currently produced from syngas, a CO/CO2/H2 mixture. Herein we identify formate binding strength as a key parameter limiting the activity and stability of known catalysts for methanol synthesis in the presence of CO2. We present a molybdenum phosphide catalyst for CO and CO2 reduction to methanol, which through a weaker interaction with formate, can improve the activity and stability of methanol synthesis catalysts in a wide range of CO/CO2/H2 feeds
    corecore