56 research outputs found

    Nasopharyngeal Carcinoma Signaling Pathway: An Update on Molecular Biomarkers

    Get PDF
    Nasopharyngeal carcinoma (NPC) is an uncommon cancer, which has a distinctive ethnic and geographic distribution. Etiology of NPC is considered to be related with a complex interaction of environmental and genetic factors as well as Epstein-Barr virus infection. Since NPC is located in the silent painless area, the disease is usually therefore diagnosed at the advanced stages; hence early detection of NPC is difficult. Furthermore, understanding in molecular pathogenesis is still lacking, pondering the identification of effective prognostic and diagnostic biomarkers. Dysregulation of signaling molecules in intracellular signal transduction, which regulate cell proliferation, apoptosis, and adhesion, underlines the basis of NPC pathogenesis. In this paper, the molecular signaling pathways in the NPC are discussed for the holistic view of NPC development and progression. The important insights toward NPC pathogenesis may offer strategies for identification of novel biomarkers for diagnosis and prognosis

    Botolinum toxins: their structure, properties, and genetics

    Get PDF
    Clostridium botulinum is Gram positive, spore-forming anaerobic bacteria, which can produce botulinum neurotoxins (BoNTs). The toxins block the release of neurotransmitter, acetylcholine, at peripheral cholinergic nerve terminal and cause flaccid paralysis of muscle in human and animals, a condition known as botulism. BoNTs are classified into seven different serotypes (designated as BoNT/ A-BoNT/G), in which serotype A, B, E, and F cause botulism in human. BoNTs are comprised of one domain of light chain (L-chain) at N-terminus and two domains of heavy chains (H-chain) at C-terminus. The function of L-chain is to cleave SNARE (soluble N-ethylmaleimide-sensitive factor attachmentprotein receptors) proteins that involve in the exocytosis of neurotransmitter whereas H-chain is responsible for binding of toxin with nerve terminal and translocating of L-chain into cytosol from synaptic vesicle. The BoNTs are usually produced as complexes called progenitor toxin complex (PTC). They bind together with neurotoxin-associated proteins (NAPs), which are haemagglutinin (HA) and non-toxin non-haemagglutinin (NTNH). The NAPs can protect BoNTs from gastrointestinal environment and facilitate the absorption andtranslocation of neurotoxin into main circulation. The genes encoding BoNTs and NAPs are arranged as gene cluster, which are organized in two operons: ha and orfX operons. Mostly, they are located on the chromosome, large plasmid, or bacteriophage at the specific location and can be transferred horizontallyto other clostridia strains

    Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria

    Get PDF
    Correspondence: Surang Chankhamhaengdecha ([email protected]) The emergence of antibiotic-resistant bacteria has become a major global health concern. Rapid and accurate diagnostic strategies to determine the antibiotic susceptibility profile prior to antibiotic prescription and treatment are critical to control drug resistance. The standard diagnostic procedures for the detection of antibiotic-resistant bacteria, which rely mostly on phenotypic characterization, are time consuming, insensitive and often require skilled personnel, making them unsuitable for point-of-care (POC) diagnosis. Various molecular techniques have therefore been implemented to help speed up the process and increase sensitivity. Over the past decade, microfluidic technology has gained great momentum in medical diagnosis as a series of fluid handling steps in a laboratory can be simplified and miniaturized on to a small platform, allowing marked reduction of sample amount, high portability and tremendous possibility for integration with other detection technologies. These advantages render the microfluidic system a great candidate to be developed into an easy-to-use sample-to-answer POC diagnosis suitable for application in remote clinical settings. This review provides an overview of the current development of microfluidic technologies for the nucleic acid based and phenotypic-based detections of antibiotic resistance

    Analysis of Ultra Low Genome Conservation in Clostridium difficile

    Get PDF
    Microarray-based comparative genome hybridisations (CGH) and genome sequencing of Clostridium difficile isolates have shown that the genomes of this species are highly variable. To further characterize their genome variation, we employed integration of data from CGH, genome sequencing and putative cellular pathways. Transcontinental strain comparison using CGH data confirmed the emergence of a human-specific hypervirulent cluster. However, there was no correlation between total toxin production and hypervirulent phenotype, indicating the possibility of involvement of additional factors towards hypervirulence. Calculation of C. difficile core and pan genome size using CGH and sequence data estimated that the core genome is composed of 947 to 1,033 genes and a pan genome comprised of 9,640 genes. The reconstruction, annotation and analysis of cellular pathways revealed highly conserved pathways despite large genome variation. However, few pathways such as tetrahydrofolate biosynthesis were found to be variable and could be contributing to adaptation towards virulence such as antibiotic resistance

    Transcriptomic profiling revealed FZD10 as a novel biomarker for nasopharyngeal carcinoma recurrence

    Get PDF
    BackgroundNasopharyngeal carcinoma (NPC) is a type of cancers that develops in the nasopharynx, the very upper part of the throat behind the nose. NPC is typically diagnosed in later stages of the disease and has a high rate of recurrence due to the location of the tumor growth site. In this study, we compared the gene expression profiles of NPC tissues from patients with and without recurrence to identify potential molecular biomarkers of NPC recurrence.MethodsMicroarrays were used to analyze the expression of genes in 15 NPC tissues taken at the time of diagnosis and at the site of recurrence following therapeutic treatment. Pathway enrichment analysis was used to examine the biological interactions between the major differentially expressed genes. The target identified was then validated using immunohistochemistry on 86 NPC tissue samples.ResultsOur data showed that the Wnt signaling pathway was enhanced in NPC tissues with recurrence. FZD10, a component of the Wnt signaling pathway, was significantly expressed in NPC tissues, and was significantly associated with NPC recurrence.ConclusionOur study provides new insights into the pathogenesis of NPC and identifies FZD10 as a potential molecular biomarker for NPC recurrence. FZD10 may be a promising candidate for NPC recurrence and a potential therapeutic target

    Antimicrobial Effect of Asiatic Acid Against Clostridium difficile Is Associated With Disruption of Membrane Permeability

    Get PDF
    Antibiotic resistance is a major concern in Clostridium difficile, the causative agent of antibiotic-associated diarrhea. Reduced susceptibility to first- and second-line agents is widespread, therefore various attempts have been made to seek alternative preventive and therapeutic strategies against this pathogen. In this work, the antimicrobial properties of asiatic acid were evaluated against C. difficile. Asiatic acid displayed substantial inhibitory effects on 19 C. difficile isolates collected from different sources with minimal inhibitory concentrations ranging from 10 to 20 μg/ml. Time kill analysis and minimal bactericidal concentration revealed potential bactericidal activity of this compound. Asiatic acid induced membrane damages and alterations in morphological ultrastructure in C. difficile, thereby causing the leakage of intracellular substances. Moreover, asiatic acid also displayed an inhibitory effect on cell motility, but did not interfere with biofilm formation and spore germination. Analysis of drug combination showed no synergistic effect between asiatic acid and vancomycin/metronidazole. Altogether, asiatic acid exhibited strong antimicrobial activity against vegetative cells and could serve as an alternative resource for tackling C. difficile

    The repertoire of ABC proteins in Clostridioides difficile

    Get PDF
    ATP-binding cassette (ABC) transporters belong to one of the largest membrane protein superfamilies, which function in translocating substrates across biological membranes using energy from ATP hydrolysis. Currently, the classification of ABC transporters in Clostridioides difficile is not complete. Therefore, the sequence-function relationship of all ABC proteins encoded within the C. difficile genome was analyzed. Identification of protein domains associated with the ABC system in the C. difficile 630 reference genome revealed 226 domains: 97 nucleotide-binding domains (NBDs), 98 transmembrane domains (TMDs), 30 substrate-binding domains (SBDs), and one domain with features of an adaptor protein. Gene organization and transcriptional unit analyses indicated the presence of 78 ABC systems comprising 28 importers and 50 exporters. Based on NBD sequence similarity, ABC transporters were classified into 12 sub-families according to their substrates. Interestingly, all ABC exporters, accounting for 64% of the total ABC systems, are involved in antibiotic resistance. Based on analysis of ABC proteins from 49 C. difficile strains, the majority of core NBDs are predicted to be involved in multidrug resistance systems, consistent with the ability of this organism to survive exposure to an array of antibiotics. Our findings herein provide another step toward a better understanding of the function and evolutionary relationships of ABC proteins in this pathogen

    Characterization of Bacteriophages Infecting Clinical Isolates of Clostridium difficile

    Get PDF
    Clostridium difficile is recognized as a problematic pathogen, causing severe enteric diseases including antibiotic-associated diarrhea and pseudomembranous colitis. The emergence of antibiotic resistant C. difficile has driven a search for alternative anti-infection modalities. A promising strategy for controlling bacterial infection includes the use of bacteriophages and their gene products. Currently, knowledge of phages active against C. difficile is still relatively limited by the fact that the isolation of phages for this organism is a technically demanding method since bacterial host themselves are difficult to culture. To isolate and characterize phages specific to C. difficile, a genotoxic agent, mitomycin C, was used to induce temperate phages from 12 clinical isolates of C. difficile. Five temperate phages consisting of ΦHR24, ΦHN10, ΦHN16-1, ΦHN16-2, and ΦHN50 were successfully induced and isolated. Spotting assays were performed against a panel of 92 C. difficile isolates to screen for susceptible bacterial hosts. The results revealed that all the C. difficile phages obtained in this work displayed a relatively narrow host range of 0–6.5% of the tested isolates. Electron microscopic characterization revealed that all isolated phages contained an icosahedral head connected to a long contractile tail, suggesting that they belonged to the Myoviridae family. Restriction enzyme analysis indicated that these phages possess unique double-stranded DNA genome. Further electron microscopic characterization revealed that the ΦHN10 absorbed to the bacterial surface via attachment to cell wall, potentially interacting with S-layer protein. Bacteriophages isolated from this study could lead to development of novel therapeutic agents and detection strategies for C. difficile
    corecore