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The emergence of antibiotic-resistant bacteria has become a major global health concern.
Rapid and accurate diagnostic strategies to determine the antibiotic susceptibility profile
prior to antibiotic prescription and treatment are critical to control drug resistance. The
standard diagnostic procedures for the detection of antibiotic-resistant bacteria, which rely
mostly on phenotypic characterization, are time consuming, insensitive and often require
skilled personnel, making them unsuitable for point-of-care (POC) diagnosis. Various molec-
ular techniques have therefore been implemented to help speed up the process and in-
crease sensitivity. Over the past decade, microfluidic technology has gained great momen-
tum in medical diagnosis as a series of fluid handling steps in a laboratory can be simpli-
fied and miniaturized on to a small platform, allowing marked reduction of sample amount,
high portability and tremendous possibility for integration with other detection technolo-
gies. These advantages render the microfluidic system a great candidate to be developed
into an easy-to-use sample-to-answer POC diagnosis suitable for application in remote clin-
ical settings. This review provides an overview of the current development of microfluidic
technologies for the nucleic acid based and phenotypic-based detections of antibiotic re-
sistance.

Introduction
The rapid emergence of antibiotic-resistant bacteria has become an increasing threat worldwide, lim-
iting treatment options, causing disease complication, prolonging hospitalization duration and dra-
matically increasing healthcare expenditure. In the United States, over two million people have suf-
fered from antibiotic-resistant bacteria with ~23000 deaths every year [1]. While in the EU, ~25000
multidrug-resistant bacteria-related fatalities were reported [2]. It is predicted that the number of deaths
due to antibiotic-resistant bacterial infections will reach ten million by 2050 [3]. There is a clear increase
in the use of antibiotics, not only for treating infections, but also for sanitizing surfaces or hands as a pre-
ventive measure [4]. In any case, extensive use of antimicrobial agents without proper regulation and/or
misdiagnosis have selectively enhanced resistant bacterial populations against various drugs. The evolu-
tionary adaptation against antimicrobial agents can be traced to mutations or the horizontal acquisition
of antibiotic resistance genes [5].

Resistant strains can emerge from single point mutations in genes responsible for drug action.

Received: 21 October 2016 For example, single point mutations in the DNA gyrase gene can cause Helicobactor pylori to
Revised: 14 January 2017 develop quinolone resistance [6]. Previous reports indicated the emergence of multidrug-resistant
Accepted: 18 January 2017 bacterial strains that are resilient to all antibiotics available on the market [1,7-9]. Unfortu-
Version of Record published: nately, the pace of novel antibiotic discovery, even with the exploitation of high-throughput screen-
3 March 2017 ing technology, has been very slow. To manage infections and minimize the development of
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drug-resistant strains of pathogens, rapid point-of-care (POC) diagnosis and antibiotic susceptibility profiling of
pathogens are crucial to ensure an effective outcome. Nonetheless, the conventional methods of bacterial diagnosis
and detection of antibiotic resistance are time consuming. Molecular approaches have been exploited as alternatives to
speed up the process, however, the operational procedures are often complicated, requiring sophisticated infrastruc-
tures, expensive reagents, specialized equipment and highly trained personnel, thus narrowing the implementation
in limited resource settings, particularly in remote areas.

Microfluidic systems, integrating several molecular processes into a single lab-on-a-chip platform, have become
an attractive tool in the field of diagnosis and have been established for various applications including biomarker
detection [10]. The advantages of the technique lie in the potential for technological integration. Different functional
modules including mechanical, optical, fluidal and electrical can be compatibly combined and tailored for the neces-
sary applications. The microfluidic device can be made of various materials including silicon [11], glass [12], quartz,
polymers such as (poly(dimethylsiloxane) or PDMS and poly(methyl methacrylate) or PMMA [13-15] and paper
[16]. The choice of materials often depends on the targeted application, the integrated detection system, the cost,
fabrication facility and solute compatibility.

Although most microfluidic devices are constructed using microfabrication techniques, various specific fabrication
techniques such as thin-film deposition [17], etching [18], bonding [17,19], injection moulding [20], embossing [21]
and soft lithography [15] have been very helpful in expanding the possibility of including other materials in the system.
Interestingly, at present, 3D printing technology has started to gain popularity and is believed to soon revolutionize
the new generation of microfluidic devices, which could be smaller, more complex, easier to control and navigate and
more compatible with other technologies [22-25].

The miniaturization of complex fluid handling steps has many advantages that render this process suitable for POC
applications, in particular, reducing the amount of sample used, high portability and the ability to integrate complex
processes into an easy-to-use system [26-29]. To date, various microfluidic systems have been designed and developed
particularly for the detection of bacterial antibiotic resistance. There are two major groups of microfluidic devices,
particularly developed for the detection of antimicrobial resistance, miniaturized nucleic acid-based microfluidic
detection and phenotypic-based antibiotic susceptibility testing (AST).

Nucleic acid-based microfluidic system for identification of
antibiotic resistance

Antibiotic-resistant phenotypes in bacteria occur through mutations or horizontal acquisition of the genes involved
in the function or metabolism of antibiotics. For example, the horizontal acquisition of the mecA gene, encoding a
penicillin-binding protein 2a (PBP2a), can confer methicillin resistance in methicillin-resistant Staphylococcus au-
reus (MRSA) [30,31]. The acquisition of antibiotic resistance-conferring genes such as the blacrx.y gene, encoding
cefotaximases (CTX-M) type extended spectrum [3-lactamases (ESBLs), is the most common cause of 3-lactam an-
tibiotic resistance among Enterobacteriaceae [32]. In Mycobacterium tuberculosis (TB), single nucleotide mutations
in various genes including katG, inhA, rpoB, embB, rrs and gyr have been shown to induce drug resistance [33].
Thus, the direct detection of mutations or genes that confer antibiotic-resistant phenotypes is a common approach
for diagnosis. However, such analysis can be quite complex, requiring multiple steps including cell lysis, isolation of
genetic material from the cell, amplification of the target gene regions and the detection of the amplified products.
Combining nucleic acid detection with microfluidic technology would be highly advantageous as all the complex
protocols can be miniaturized on to a single ‘lab-on-a-chip’ platform, as presented in Figure 1. The microfluidic sys-
tem significantly reduces not only the amount of samples and reagents required for the analysis, but also the reaction
time. Examples of integrated modules in the device for the detection of antibiotic resistance genes are summarized in
Table 1.

Sample preparation/nucleic acid isolation

For on-site analysis, sample pre-processing is often required in order to obtain nucleic acids that are suitable for
microfluidic analysis [34-41]. Various methods such as exposure to heat, lytic enzymes and different kinds of chem-
icals have been utilized to facilitate cell disruption in order to extract the DNA from the specimen [38,40,42,43].
Although, in some cases, the lysates can be directly subjected to PCR, loop isothermal amplification (LAMP), recom-
binase polymerase amplification (RPA) analyses [40,43], additional steps to increase the purity and concentration of
the template nucleic acids are often required to improve the accuracy and sensitivity of the test. After cell lysis, DNA
can be captured through the adsorption of nucleic acids on certain materials, such as silicon-coated beads and matri-
ces, silicon-based microstructures, super paramagnetic particles (PMPs) and cationic polymers, such as chitosan and
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Figure 1. Schematic diagram depicting the workflow of the nucleic acid detection on microfluidic platforms
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cellulose [34,35,38,39,44,45]. In addition, to further purify and concentrate the isolated DNA from the specimen, a
variety of separation technologies have been implemented in microfluidic applications, including bead capture [43],
magnetic capture [43,46-48], isotachophoresis [49-52] and filtration through an immiscible interface [36,37,53,54].
Recently, several platforms have successfully performed single-step nucleic acid purification and concentration, for
example, a chitosan-based in-membrane DNA purification system that not only allows the specimen to be substan-
tially concentrated but also stored in the membrane for further use [43]. Immiscible filtration assisted by surface
tension (IFAST) allows the DNA of H. pylori from stool samples to be isolated and concentrated by 40-fold within
7 min [53]. The recently developed low-cost, stand-alone, integrated microfluidic system, called nucleic acid isota-
chophoresis LAMP (NAIL), combines isotachophoresis with LAMP detection. Such a system allows rapid detection
of E. coli O157:H7 from a milk specimen with a sensitivity and specificity comparable to lab-based methods (10°
cfu/ml) [49].

Amplification and detection methods

Although considerable effort has been focused on developing an effective and rapid method for the extraction and pu-
rification of nucleic acids from various kinds of specimens, the amount of genetic material present in samples is under
the detection limit of almost all nucleic acid-based detection techniques. The amplification process is often needed
to increase the copies of the target nucleic acids to the point where reliable results can be obtained. Two major ampli-
fication technologies have been implemented in microfluidic devices i.e. thermal cycling nucleic acid amplification
and isothermal amplification processes. For thermal cycling, PCR and related technologies, including multiplex and
quantitative real-time PCR, have been widely integrated with microfluidic devices. Although many microfluidic PCR
devices have been established [55,56], very few devices have been exploited for the diagnosis of antibiotic-resistant
bacteria. In 2013, Chen et al. [57] developed a disposable, integrated, modular-based microfluidic system that can be
used to differentiate MRSA from methicillin-sensitive S. aureus (MSSA), based on the existence of the mecA gene,
through fluorescent detection. The detection of single nucleotide mutations in various genes of TB have also been
evaluated by an integrated microfluidic TagMan array card (TAC) with high resolution melt (HRM) analysis [58].
Using this device, PCR reactions can be carried out simultaneously with high confidence. However, the TAC system
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Table 1 Summary of some microfluidic platforms of nucleic acid detection for antibiotic-resistant bacteria

Sample
Pathogenic prepara-
bacte- Microfluidic tion/DNA  Amplification Time of
Types of ria/DNA device isolation on methods on Detection measure-
specimen sources Biomarkers substrates device the device methods LOD ment Reference
Bacterial H. pylori Mutation of PDMS Magnetic Single Fluorescence 102 cfu/ml ~B0 min [46]
culture DNA gyrase beads coated nucleotide
with 16S rRNA  polymorphism
probe polymerase
chain reaction
(SNP-PCR)
Spiked urine K. pneumoniae  blacTx-m-15 PMMA Anionic RPA (off-chip)  Fluorescence 103 cfu/ml 45 min [43]
exchange (off-chip)
DEAE-coated
magnetic
beads
Genomic DNA S. aureus SG168S, spa, PC/PMMA Thermal and multiplex 102 cfu/ml 40 min [57]
(MRSA, MSSA) femA, PVL and chemical PCR/ligase  Hybridization/fluorescence
mecA process detection
(off-chip) reaction (LDR)
Bacterial S. aureus mecA Double-layered  Solid phase LAMP Calcein dye 10% cfu/ml 120 min [39]
culture (MRSA, MSSA) chip fabricated extraction and observed
with PDMS (SPE) using under UV light
silica bead for
DNA extraction
Genomic DNA B inhA, katG, Not specified  DNA extraction Real-time PCR  HRM/TagMan  Not specified 90 min [58]
rpoB, embB, (off-chip) (48 different probe with
rosL, rrs, eis, PCR fluorescence
gyrA, gyrB and simultaneously)
pNcA
Genomic DNA E. coli blacr1s AM-EWOD  DNA extraction RPA Fluorescence 20 pg/ul 10-15 min [59]
kit (off-chip)
DNA fragment S. aureus mecA Foil substrate ~ PCR product RPA Fluorescence <5 x 1076 20 min [60]
of mecA gene casted with of mecA gene pg/ul (<10
(420 bp) PDMS (off-chip) copies)
Genomic DNA  Mixed bacterial  mecA, NDM, PMMA with DNA extraction ~ PCR on flat Fluorescence 1 pg/ul 90 min [61]
genomic DNA  VIM, IMP, KPC, parallel of kit (off-chip) ~ PCR apparatus
DHA, OXA23, connected
OXA24, reaction
OXA58, sections
CTX-MT1,
CTX-M2, VanA,
VanB
Spiked clinical S. aureus mecA PDMS-based Specific LAMP Optical density 0.01 pg/ul 60 min [48]
samples (MRSA) microfluidic  probe-conjugated of LAMP
system magnetic amplicons
beads using spec-
targeting DNA trophotometer
of MRSA
requires an expensive real-time PCR platform and HRM analysis software, therefore further development is required
for clinical application due to the need for high purity DNA for HRM analysis. Moreover, a multiplex PCR-based
microfluidic chip that can be placed in a regular PCR machine has previously been shown to detect up to 13 antibi-
otic resistance genes from a pool of bacterial DNA [29]. For successful multiplex detection, PCR-based microfluidic
devices might not be suitable for field application, especially in remote areas, as the system requires a thermocycler
for precise temperature control. Suitable materials and a robust sealing protocol for PCR-based microfluidic fabrica-
tion are required as the selected materials have to be resilient to the fluctuations of relatively extreme temperatures
experienced during thermal cycling [62].

Isothermal amplification has gained wide interest as an alternative method for integration with the microfluidic
platform because expensive instruments, such as a thermocycler or sophisticated protocols are not required, which
dramatically reduce the complexity of the systems and device, making them more suitable for POC purposes. Several
designs for miniaturized isothermal amplification-based microfluidic systems have been recently reviewed in Troger
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et al. [63]. For isothermal nucleic acid detection, the two technologies that are often integrated with the microfluidic
system are LAMP and RPA.

LAMP is achieved using Bst DNA polymerase, which exhibits strand displacement activity [64]. The high speci-
ficity and sensitivity of the LAMP technique typically lie in a specific set of four to six primers that recognize six to
eight distinct regions on the target gene. The simplicity of the technique and the isothermal nature of the reaction
are highly advantageous as this allows on-site POC application. To date, many kinds of microfluidic LAMP systems
have been developed to detect food-borne pathogens [65,66], viruses [67] and multidrug-resistant bacteria [39,48]
with high accuracy and high sensitivity. Guo et al. [39] reported the successful amplification of DNA from as low as 1
cfu/pl of bacteria using microfluidic LAMP, enabling rapid detection of the antibiotic-resistant mecA gene of MRSA.
Notably, an integrated microfluidic LAMP developed by Wang et al. [48] has been able to detect MRSA in clinical
samples with extremely high sensitivity. Despite the advantages, the optimal conditions for LAMP require stable op-
eration at a relatively high temperature (60-65°C), which means that an additional thermal module is needed in the
system.

RPA is mediated through three core enzymes including recombinase, ssDNA-binding protein (SSB) and
strand-displacing DNA polymerase. The orchestrated activities of all these enzymes allow the detection process to be
performed not only at a constant temperature of ~37°C but also with a short reaction time [68]. Moreover, lyophilized
RPA reagents can be stored in the cartridge for an extended period of time, which reduces the number of manual han-
dling and tube-based reaction steps. To date, several RPA-based microfluidic devices have been developed for various
applications. For example, Lutz et al. [60] proposed a centrifugo-pneumatic-controlled RPA-based microfluidic car-
tridge that could rapidly detect the mecA gene at a high sensitivity with a limit of detection (LOD) of <10 copies [60].
However, detection of the gene from the genomic DNA of S. aureus or from the crude DNA of clinical samples has not
yet been demonstrated. The recent rapid development of various technologies, including electrowetting and a com-
puterized control system, allows more complex microfluidic designs to be fabricated and a more automated system
to be further developed at a rapid pace. Kalsi et al. successfully demonstrated a rapid and sensitive RPA-based quan-
tificative detection of the blacrx.pm-15 gene using an active matrix electrowetting-on-dielectric (AM-EWOD) digital
microfluidic platform [59]. This fully programmable AM-EWOD device allows precise and automated manipulation
of reaction droplets, in terms of sizing, positioning and mixing, at the nanolitre scale; therefore, the assay requires
a minute amount of samples and reagents. The fluorescent signal monitoring integrated with the system permits a
rapid and very sensitive readout with the LOD of a single copy within 10-15 min. Despite fully programmable droplet
control using AM-EWOD, it still needs human intervention due to the lack of DNA extraction module incorporated
in the system [42]. Moreover, detection of a small volume could cause a marked reduction in sensitivity due to the
absorption of nucleic acids on to the surface of the device [60].

Phenotypic-based microfluidic platform for AST

The nucleic acid based approach for the detection of antibiotic resistance demonstrates the ability to detect resistance,
however, it does not provide relevant information on susceptibility. It is important that AST confirms susceptibility
to antimicrobial agents in individual bacterial isolates for efficient infection treatment. Conventionally, standard AST
is determined either by broth or disc diffusion methods. The broth dilution method enables determination of the
minimal inhibitory concentration (MIC) of the antibiotic that prevents bacterial growth whereas the disc diffusion
method commonly provides qualitative information on whether the bacterial strains are susceptible or resistant to
antibiotics [69]. These culture-based assays usually take ~3-7 days to give complete results [70]. A few days are needed
to culture bacteria to the proper density, prior to incubation with antibiotics, in order to reach the limited sensitivity
of detection at ~107 cfu/ml [71]. The current AST protocol has several limitations: (i) the growth of bacteria is often
measured based on culture turbidity, so false positives can be found in the case of filamentous bacteria, (ii) the test
requires large quantities of clinical samples (~10-30 ml), such as blood or urine [72], (iii) a large amount of antibiotics
is required, (iv) interpretation requires complex analytical processes and (v) the techniques only work with culturable
bacteria. Due to the aforementioned limitations, numerous microfluidic platforms have been developed for AST. The
experimental workflow of microfluidics for AST is depicted in Figure 2. While conventional AST determines the
susceptibility of bacteria to the drug based on cell viability and division via the visual inspection of culture turbidity
or colony growth, several microfluidic platforms detect biochemical and physiological changes in bacterial metabolic
activity [73-75], which improve the sensing capability of the systems. During culture, bacteria utilize glucose and
other sugars and produce acid metabolites, causing changes in the pH of the culture medium. Under acidic conditions,
a pH-sensitive chitosan hydrogel is swollen, resulting in changes in effective optical thickness (EOT). Integration of
this unique pH-sensitive chitosan hydrogel with PDMS microfluidic channels resulted in a microfluidic pH sensor
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Figure 2. Schematic diagrams depicting the workflow of the phenotypic-based AST microfluidics
Monitoring of bacterial biochemical (A) and morphological (B) changes in response to antibiotics.

[75]. The chitosan-based pH sensor is very sensitive even to a slight change of pH caused by bacterial growth; thus,
antibiotic susceptibility can simply be determined by loading the specimen of bacteria, cultured in a glucose medium
spiked with different concentrations of antibiotics, into a microfluidic pH sensor. A change in EOT can be determined
by Fourier transform reflectometric interference spectroscopy (FT-RIFS). The MIC values can be derived from the
EOT changes. The strategy is particularly interesting as it demonstrates that the confinement of bacterial cells in
a high surface-to-volume ratio microchannel allows the rapid accumulation of metabolic products, and therefore,
eliminates the need for a long period of pre-incubation and reduces the detection time to <2 h. These techniques
are only applicable for a group of bacteria that can produce metabolic acids but can lead to false negative/positive
scenarios e.g. a pH change associated with bacteria being killed by antibiotics may arise. Nonetheless, a phenotype
microarray (PM) [76] based on this pH sensor with pre-configured antibiotics added into each well will be particularly
useful in the clinical setting, as the rapid determination of the MIC of different antibiotics would allow the resistance
mechanisms of such pathogens to be readily defined.

Other microfluidic AST strategies exploit the change in bacterial cell phenotypes and properties when exposed
to antibiotics. For example, surface-plasmon resonance (SPR) based biosensor platforms have been widely used to
distinguish susceptible and resistant strains of bacteria by detecting variations in the refractive index of bacteria when
treated with antibiotics in real time [73]. Moreover, a PDMS-based optofluidic device developed by Lu et al. [77],
coupled with surface enhanced Raman scattering (SERS) spectroscopy can accurately differentiate MSSA and MRSA
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in clinical isolates. The results showed high sensitivity and selectivity compared with that of PCR and multilocus
sequence typing (MLST).

Certain microfluidic devices utilize the stress activation of biosynthetic pathways, which are the primary targets
of antibiotics [78]. For example, 3-lactam antibiotics interfere with the repair of cell wall damage, causing rapid cell
death in susceptible strains, but not in resistant strains. Therefore, the design involves a microfluidic system that
can cause physical damage to the bacterial cell wall. The device contains channels specifically designed to flow the
culture media through the channel surface-immobilized bacteria and monitor the uptake of SYTOX Green dye into
the cells. Wild-type bacteria are able to repair the cell wall and will not be eliminated by the flow and hence will not
take up the dye. Enzymatic stress with subinhibitory concentrations of lysostaphin, a peptidase enzyme that can be
used to damage the cell wall, is used to test the system. Bacterial cell death and rates of killing can be measured in the
presence and absence of 3-lactam antibiotics. Stress-activated microfluidic platforms have been used to investigate
the antibiotic susceptibility of 16 clinically relevant S. aureus strains in a blinded study. Full diagnostic results could
be obtained within 1 h after introduction of the antibiotic with correct designation of the phenotypes of the tested
strains. The results demonstrate the great potential of the stress-based approach microfluidic system for phenotypic
AST and for the evaluation of the effects of various stresses on bacteria and their antibiotic susceptibility.

Furthermore, determining single cell growth can also be used to evaluate the antibiotic susceptibility of pathogens
[79]. A single cell growth tracking microfluidic device has been designed to immobilize bacteria (either immobilized
on to the surface or trapped in agarose medium) to enable visual recording of single cell growth and division under
a bright-field microscope in the presence or absence of antimicrobial drugs. Using the image processing algorithms,
time-lapse images of a single bacterium in different antibiotic concentrations can be analysed in terms of division, fil-
amentary formation and the swelling of treated cells, etc., which can directly reflect antibiotic susceptibility. It should
be noted that the responses of bacteria to antibiotic treatment can be very diverse and specific to the different an-
tibiotic conditions. A more accurate characterization of the responses, based on cellular morphology and division,
has been developed. The validity of the results obtained from the single-cell morphological analysis on the microflu-
idic platform has been verified using four different standard bacteria from the Clinical Laboratory Standard Institute
(CLSI) [80]. The results obtained showed excellent agreement with those of the CLSI assay, suggesting that such an
approach could be a promising tool for the rapid quantificative diagnosis of antibiotic susceptibility.

Multidrug-resistant Pseudomonas aeruginosa (MDRP) has recently become a global concern [81-83]. In 2016,
Matsumoto et al. [84], presented a ready-to-use multichannel microfluidic device, preloaded with dried antimicro-
bials, allowing the simultaneous microscopic observation of the growth of antimicrobial-treated and -untreated P.
aeruginosa cells [84]. The system only requires 3 h of incubation to evaluate antibiotic susceptibility. The software
accompanying the system is almost automated and provides various quantificative results that enable careful inter-
pretation based on cell numbers and the shapes and lengths of treated and control cells. The accuracy of the device
has been confirmed with 101 clinical isolates of P. aeruginosa and is claimed to be strongly similar to the standard
microbroth dilution method [84]. The system nonetheless requires a well-equipped microscope for monitoring bac-
terial phenotypic changes and a decent computer for image processing, which might preclude the application in a
resource-limited setting. The rapid development of an advanced mobile device and a high-resolution camera pro-
vides great complementary technology that could aid not only the imaging but also processing of the data. Currently,
there is no microscopic attachment or advanced mobile camera that can provide sufficient resolution to unambigu-
ously distinguish changes in bacterial cell morphology. It is clear that significant improvement of this technology is
still required before it can be useful for application in resource-limited areas. Moreover, result interpretation mostly
relies on image analysis, and the reliability of the algorithm used to classify bacteria of different types into different
populations could be a major challenge, especially for a mixed population of bacteria as well as bacteria such as cocci
or coccobacilli, whose drug-induced morphological changes might not be easily distinguishable.

The phenotypic-based microfluidic system exhibits a major advantage as some antibiotic-induced physiological
changes occur long before growth inhibition can be observed. Standard methods as well as automated instrument
methods for AST are mostly based on measuring bacterial growth inhibition, which requires 18-24 h to obtain the
results. However, one major challenge for phenotypic-based AST is the requirement of algorithms to translate the
obtained results into precise MIC values.

Conclusions

The number of reliable and accurate diagnostic assays for antibiotic-resistant bacteria is increasing, with a view to
mitigate antibiotic resistance and provide correct and precise clinical care. The integration and miniaturization of
complex biochemical and molecular protocols into a single lab-on-a-chip platform provide tremendous advantages,
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not only in improving the detection limit and reducing the sample amount and consumables, but also in simplifying
the complex protocols for various types of medical diagnosis including the rapid detection of multidrug-resistant
pathogens. Nucleic acid-based microfluidic platforms require several steps for nucleic acid isolation, amplification
and detection, while the phenotypic-based microfluidic platforms require methods and devices to detect changes
in the metabolites and physiology of antibiotic-resistant bacteria. Microfluidic platforms have several advantages
over the current standard laboratory practice which include: enabling the extensive use of complex multiplexing
approaches and formats, the capacity to include sequential sample preconditioning steps of different types, reagent
storage, the use of multiple steps involving reagent addition, mixing and washing, the potential for the incorporation of
centrifugal steps and the application of a range of detection strategies leading to greater sensitivity and clarity of results.
The integration of the microfluidic system with advanced fabrication technologies could soon be revolutionizing
the future of diagnosis, especially by moving towards the one-step sample-to-answer POC detection of antibiotic
resistance.

Summary

e The field of microfluidics has been exploited for a wide range of applications in the detection of
genes or mutations conferring antibiotic resistance as well as physiological or metabolic changes
involved in antibiotic-resistant traits.

e Thermocycling and isothermal amplification could be integrated into microfluidic platforms for
nucleic acid detection.

e To enable the rapid profiling of antimicrobial susceptibility to antimicrobial agents, various types
of phenotypic-based microfluidic AST have been successfully developed.

e The advantages of microfluidic systems for the detection of antibiotic resistance compared with
conventional techniques include smaller reagent volumes (1-10 pl), enhanced detection sensi-
tivity (single cell), more rapid (1-4 h) and improved portability. However, the portability aspect
needs to be further adjusted due to the requirement of syringe pumps, pneumatic actuators and
other ancillary equipment such as a microscope and optical sensing for POC applications.
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gene; POC, point-of-care; PVL, Panton-Valentine leukocidin; RPA, recombinase polymerase amplification; rpoB, -subunit of
bacterial RNA polymerase gene; rpsL, ribosomal S12 protein gene; rrs, 16s rRNA gene; SG16S, 16s rRNA gene specific for the
genus Staphyloccus; spa, staphylococcal protein A gene; TAC, TagMan array card; TB, Mycobacterium tuberculosis; van, van-
comycin resistant gene; VIM, Verona imipenemase metallo-f3-lactamase gene.
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