595 research outputs found

    Representing addition and subtraction : learning the formal conventions

    Get PDF
    The study was designed to test the effects of a structured intervention in teaching children to represent addition and subtraction. In a post-test only control group design, 90 five-year-olds experienced the intervention entitled Bi-directional Translation whilst 90 control subjects experienced typical teaching. Post-intervention testing showed some significant differences between the two groups both in terms of being able to effect the addition and subtraction operations and in being able to determine which operation was appropriate. The results suggest that, contrary to historical practices, children's exploration of real world situations should precede practice in arithmetical symbol manipulation

    Validation of a continuous, arterial pressure-based cardiac output measurement: a multicenter, prospective clinical trial

    Get PDF
    INTRODUCTION: The present study compared measurements of cardiac output by an arterial pressure-based cardiac output (APCO) analysis method with measurement by intermittent thermodilution cardiac output (ICO) via pulmonary artery catheter in a clinical setting. METHODS: The multicenter, prospective clinical investigation enrolled patients with a clinical indication for cardiac output monitoring requiring pulmonary artery and radial artery catheters at two hospitals in the United States, one hospital in France, and one hospital in Belgium. In 84 patients (69 surgical patients), the cardiac output was measured by analysis of the arterial pulse using APCO and was measured via pulmonary artery catheter by ICO; to establish a reference comparison, the cardiac output was measured by continuous cardiac output (CCO). Data were collected continuously by the APCO and CCO technologies, and at least every 4 hours by ICO. No clinical interventions were made as part of the study. RESULTS: For APCO compared with ICO, the bias was 0.20 l/min, the precision was +/- 1.28 l/min, and the limits of agreement were -2.36 l/m to 2.75 l/m. For CCO compared with ICO, the bias was 0.66 l/min, the precision was +/- 1.05 l/min, and the limits of agreement were -1.43 l/m to 2.76 l/m. The ability of APCO and CCO to assess changes in cardiac output was compared with that of ICO. In 96% of comparisons, APCO tracked the change in cardiac output in the same direction as ICO. The magnitude of change was comparable 59% of the time. For CCO, 95% of comparisons were in the same direction, with 58% of those changes being of similar magnitude. CONCLUSION: In critically ill patients in the intensive care unit, continuous measurement of cardiac output using either APCO or CCO is comparable with ICO. Further study in more homogeneous populations may refine specific situations where APCO reliability is strongest.status: publishe

    The dermal skeleton of the jawless vertebrate Tremataspis mammilata (Osteostraci, stem-Gnathostomata)

    Get PDF
    Osteostracans are the closest jawless relatives of jawed vertebrates, informing the gradual assembly of the vertebrate mineralised skeleton. Conflicting interpretations of their dermal skeletal histology arise from failure to account for topological variation, obscuring their significance in elucidating vertebrate skeletal evolution. To resolve this, we characterize the cranial and trunk dermal skeleton of a single individual of Tremataspis mammilata (Osteostraci, Thyestiida) at submicron resolution using synchrotron tomography. Our results show that the architecture of the Tremataspis dermal skeleton is, for the most part, conserved over the skeleton and is broadly consistent with previous histological hypotheses based on 2-dimensional thin section study. We resolve debate over the homology of the basal layer, identifying it as osteogenic acellular isopedin rather than odontogenic elasmodine or metaplastic ossification of the stratum compactum of the dermis. We find topological variation between all dermal skeletal elements studied, and particularly between the cranial and postcranial dermal skeleton. This variation can be largely explained by reduction in differentiation due to geometric constraints imposed within smaller skeletal elements, such as scales. Our description of the dermal skeleton of Tremataspis mammilata provides a foundation for interpreting data from cursory topological samples of dermal skeletal diversity obtained in other osteostracans. This reveals general aspects of histological structure that must be primitive for osteostracans and, likely, ancestral jawed vertebrates. Finally, we draw the distinction between hypotheses and descriptions in palaeohistology

    On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 AU

    Full text link
    Measurements of coronal mass ejections (CMEs) by multiple spacecraft at small radial separations but larger longitudinal separations is one of the ways to learn about the three-dimensional structure of CMEs. Here, we take advantage of the orbit of the Wind spacecraft that ventured to distances of up to 0.012 astronomical units (au) from the Sun-Earth line during the years 2000 to 2002. Combined with measurements from ACE, which is in a tight halo orbit around L1, the multipoint measurements allow us to investigate how the magnetic field inside magnetic ejecta (MEs) changes on scales of 0.005 - 0.012 au. We identify 21 CMEs measured by these two spacecraft for longitudinal separations of 0.007 au or more. We find that the time-shifted correlation between 30-minute averages of the non-radial magnetic field components measured at the two spacecraft is systematically above 0.97 when the separation is 0.008 au or less, but is on average 0.89 for greater separations. Overall, these newly analyzed measurements, combined with 14 additional ones when the spacecraft separation is smaller, point towards a scale length of longitudinal magnetic coherence inside MEs of 0.25 - 0.35 au for the magnitude of the magnetic field but 0.06 - 0.12 au for the magnetic field components. This finding raises questions about the very nature of MEs. It also highlights the need for additional "mesoscale" multi-point measurements of CMEs with longitudinal separations of 0.01 - 0.2 au.Comment: Published in ApJL, 6 page

    Evolution of Plasma Composition in an Eruptive Flux Rope

    Get PDF
    Magnetic flux ropes are bundles of twisted magnetic field enveloping a central axis. They harbor free magnetic energy and can be progenitors of coronal mass ejections (CMEs). However, identifying flux ropes on the Sun can be challenging. One of the key coronal observables that has been shown to indicate the presence of a flux rope is a peculiar bright coronal structure called a sigmoid. In this work, we show Hinode EUV Imaging Spectrometer observations of sigmoidal active region (AR) 10977. We analyze the coronal plasma composition in the AR and its evolution as a sigmoid (flux rope) forms and erupts as a CME. Plasma with photospheric composition was observed in coronal loops close to the main polarity inversion line during episodes of significant flux cancellation, suggestive of the injection of photospheric plasma into these loops driven by photospheric flux cancellation. Concurrently, the increasingly sheared core field contained plasma with coronal composition. As flux cancellation decreased and a sigmoid/flux rope formed, the plasma evolved to an intermediate composition in between photospheric and typical AR coronal compositions. Finally, the flux rope contained predominantly photospheric plasma during and after a failed eruption preceding the CME. Hence, plasma composition observations of AR 10977 strongly support models of flux rope formation by photospheric flux cancellation forcing magnetic reconnection first at the photospheric level then at the coronal level

    Testing models of dental development in the earliest bony vertebrates, Andreolepis and Lophosteus

    Get PDF
    Theories on the development and evolution of teeth have long been biased by the fallacy that chondrichthyans reflect the ancestral condition for jawed vertebrates. However, correctly resolving the nature of the primitive vertebrate dentition is challenged by a dearth of evidence on dental development in primitive osteichthyans. Jaw elements from the Silurian–Devonian stem-osteichthyans Lophosteus and Andreolepis have been described to bear a dentition arranged in longitudinal rows and vertical files, reminiscent of a pattern of successional development. We tested this inference, using synchrotron radiation X-ray tomographic microscopy (SRXTM) to reveal the pattern of skeletal development preserved in the sclerochronology of the mineralized tissues. The tooth-like tubercles represent focal elaborations of dentine within otherwise continuous sheets of the dermal skeleton, present in at least three stacked generations. Thus, the tubercles are not discrete modular teeth and their arrangement into rows and files is a feature of the dermal ornamentation that does not reflect a polarity of development or linear succession. These fossil remains have no bearing on the nature of the dentition in osteichthyans and, indeed, our results raise questions concerning the homologies of these bones and the phylogenetic classification of Andreolepis and Lophosteus

    Magnetic Imaging of the Outer Solar Atmosphere (MImOSA): Unlocking the driver of the dynamics in the upper solar atmosphere

    Full text link
    The magnetic activity of the Sun directly impacts the Earth and human life. Likewise, other stars will have an impact on the habitability of planets orbiting these host stars. The lack of information on the magnetic field in the higher atmospheric layers hampers our progress in understanding solar magnetic activity. Overcoming this limitation would allow us to address four paramount long-standing questions: (1) How does the magnetic field couple the different layers of the atmosphere, and how does it transport energy? (2) How does the magnetic field structure, drive and interact with the plasma in the chromosphere and upper atmosphere? (3) How does the magnetic field destabilise the outer solar atmosphere and thus affect the interplanetary environment? (4) How do magnetic processes accelerate particles to high energies? New ground-breaking observations are needed to address these science questions. We suggest a suite of three instruments that far exceed current capabilities in terms of spatial resolution, light-gathering power, and polarimetric performance: (a) A large-aperture UV-to-IR telescope of the 1-3 m class aimed mainly to measure the magnetic field in the chromosphere by combining high spatial resolution and high sensitivity. (b) An extreme-UV-to-IR coronagraph that is designed to measure the large-scale magnetic field in the corona with an aperture of about 40 cm. (c) An extreme-UV imaging polarimeter based on a 30 cm telescope that combines high throughput in the extreme UV with polarimetry to connect the magnetic measurements of the other two instruments. This mission to measure the magnetic field will unlock the driver of the dynamics in the outer solar atmosphere and thereby greatly advance our understanding of the Sun and the heliosphere.Comment: Submitted to Experimental Astronomy (on 28. Jul. 2020). Based on a proposal submitted in response to a call for white papers in the Voyage 2050 long-term plan in the ESA science programme. 36 pages, 10 figure

    Impacts of water and soil conservation strategies on households’ food security in North West of Benin

    Get PDF
    This study aims at analyzing the impact of water and soil conservation strategies on households’ food security in the North-western part of Benin. It was conducted in the municipalities of BoukombĂ© and OuakĂ©. Three villages were studied. From random way, 180 producers were investigated. The causes of soil degradation, water and soil conservation strategies, available food supply and food consumption frequency were collected. Degradation factors were analyzed using discourse analysis and prioritized using the Friedman test. Food supply and frequency of consumption were compared between beneficiaries and non-beneficiaries of the projects using the Student t test. Land degradation is caused by socio-cultural factors (overexploitation of lands, trees’ cutting, late bush fires, grazing, agroforestry and monoculture) and natural factors (heavy rains and steep gradient of the soils). The first three factors are respectively the exploitation of land, trees’ cutting and late bush fires practice in both towns. Food reserves before the new crops were not affected by exogenous strategies released by the erosion control projects. But the frequency of food consumption is improved statistically among project beneficiaries than non-beneficiaries. This confirms the theory of Boserup
    • 

    corecore