5 research outputs found

    Elm tree defences against a specialist herbivore are moderately primed by an infestation in the previous season

    Get PDF
    The studies of the long-term effects of insect infestations on plant anti-herbivore defences tend to focus on feeding-induced damage. Infestations by an entire insect generation, including egg depositions as well as the feeding insects, are often neglected. Whilst there is increasing evidence that the presence of insect eggs can intensify plants’ anti-herbivore defences against hatching larvae in the short term, little is known about how insect infestations, including insect egg depositions, affect plant defences in the long term. We addressed this knowledge gap by investigating long-term effects of insect infestation on elm’s (Ulmus minor Mill. cv. ‘Dahlem’) defences against subsequent infestation. In greenhouse experiments, elms were exposed to elm leaf beetle (ELB, Xanthogaleruca luteola) infestation (adults, eggs and larvae). Thereafter, the trees cast their leaves under simulated winter conditions and were re-infested with ELB after the regrowth of their leaves under simulated summer conditions. Elm leaf beetles performed moderately worse on previously infested elms with respect to several developmental parameters. The concentrations of the phenylpropanoids kaempferol and quercetin, which are involved in egg-mediated, short-term effects on elm defences, were slightly higher in the ELB-challenged leaves of previously infested trees than in the challenged leaves of naïve trees. The expression of several genes involved in the phenylpropanoid pathway, jasmonic acid signalling, and DNA and histone modifications appeared to be affected by ELB infestation; however, prior infestation did not alter the expression intensities of these genes. The concentrations of several phytohormones were similarly affected in the currently challenged leaves of previously infested trees and naïve trees. Our study shows that prior infestation of elms by a specialised insect leads to moderately improved defences against subsequent infestation in the following growing season. Prior infestation adds a long-term effect to the short-term enhancer effect that plants show in response to egg depositions when defending against hatching larvae

    Testing the effect of individual scent compounds on pollinator attraction in nature using quasi-isogenic Capsella lines

    Get PDF
    Premise Floral scent, usually consisting of multiple compounds, is a complex trait, and its role in pollinator attraction has received increasing attention. However, disentangling the effect of individual floral scent compounds is difficult due to the complexity of isolating the effect of single compounds by traditional methods. Methods Using available quasi-isogenic lines (qILs) that were generated as part of the original mapping of the floral scent volatile-related loci CNL1 (benzaldehyde) and TPS2 (β-ocimene) in Capsella, we generated four genotypes that should only differ in these two compounds. Plants of the four genotypes were introduced into a common garden outside the natural range of C. rubella or C. grandiflora, with individuals of a self-compatible C. grandiflora line as pollen donors, whose different genetic background facilitates the detection of outcrossing events. Visitors to flowers of all five genotypes were compared, and the seeds set during the common-garden period were collected for high-throughput amplicon-based sequencing to estimate their outcrossing rates. Results Benzaldehyde and β-ocimene emissions were detected in the floral scent of corresponding genotypes. While some pollinator groups showed specific visitation preferences depending on scent compounds, the outcrossing rates in seeds did not vary among the four scent-manipulated genotypes. Conclusions The scent-manipulated Capsella materials constructed using qILs provide a powerful system to study the ecological effects of individual floral scent compounds under largely natural environments. In Capsella, individual benzaldehyde and β-ocimene emission may act as attractants for different types of pollinators

    Plant defensive responses to insect eggs are inducible by general egg-associated elicitors

    Get PDF
    Egg deposition by herbivorous insects is well known to elicit defensive plant responses. Our study aimed to elucidate the insect and plant species specificity of these responses. To study the insect species specificity, we treated Arabidopsis thaliana with egg extracts and egg-associated secretions of a sawfly (Diprion pini), a beetle (Xanthogaleruca luteola) and a butterfly (Pieris brassicae). All egg extracts elicited salicylic acid (SA) accumulation in the plant, and all secretions induced expression of plant genes known to be responsive to the butterfly eggs, among them Pathogenesis-Related (PR) genes. All secretions contained phosphatidylcholine derivatives, known elicitors of SA accumulation and PR gene expression in Arabidopsis. The sawfly egg extract did not induce plant camalexin levels, while the other extracts did. Our studies on the plant species specificity revealed that Solanum dulcamara and Ulmus minor responded with SA accumulation and cell death to P. brassicae eggs, i.e. responses also known for A. thaliana. However, the butterfly eggs induced neoplasms only in S. dulcamara. Our results provide evidence for general, phosphatidylcholine-based, egg-associated elicitors of plant responses and for conserved plant core responses to eggs, but also point to plant and insect species-specific traits in plant–insect egg interactions

    Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella

    Get PDF
    The transition from pollinator‐mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate‐CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent

    Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy

    Get PDF
    Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity
    corecore