4 research outputs found

    Mood disorders induced by maternal overnutrition : the role of the gut-brain axis on the development of depression and anxiety

    Get PDF
    Since the first evidence suggesting that maternal nutrition can impact the development of diseases in the offspring, much has been elucidated about its effects on the offspring’s nervous system. Animal studies demonstrated that maternal obesity can predispose the offspring to greater chances of metabolic and neurodevelopmental diseases. However, the mechanisms underlying these responses are not well established. In recent years, the role of the gut-brain axis in the development of anxiety and depression in people with obesity has emerged. Studies investigating changes in the maternal microbiota during pregnancy and also in the offspring demonstrate that conditions such as maternal obesity can modulate the microbiota, leading to long-term outcomes in the offspring. Considering that maternal obesity has also been linked to the development of psychiatric conditions (anxiety and depression), the gut-brain axis is a promising target to be further explored in these neuropsychiatric contexts. In the present study, we review the relationship between maternal obesity and anxious and depressive features, exploring the gut-brain axis as a potential mechanism underlying this relationship

    Mood Disorders Induced by Maternal Overnutrition: The Role of the Gut-Brain Axis on the Development of Depression and Anxiety

    Get PDF
    Since the first evidence suggesting that maternal nutrition can impact the development of diseases in the offspring, much has been elucidated about its effects on the offspring’s nervous system. Animal studies demonstrated that maternal obesity can predispose the offspring to greater chances of metabolic and neurodevelopmental diseases. However, the mechanisms underlying these responses are not well established. In recent years, the role of the gut-brain axis in the development of anxiety and depression in people with obesity has emerged. Studies investigating changes in the maternal microbiota during pregnancy and also in the offspring demonstrate that conditions such as maternal obesity can modulate the microbiota, leading to long-term outcomes in the offspring. Considering that maternal obesity has also been linked to the development of psychiatric conditions (anxiety and depression), the gut-brain axis is a promising target to be further explored in these neuropsychiatric contexts. In the present study, we review the relationship between maternal obesity and anxious and depressive features, exploring the gut-brain axis as a potential mechanism underlying this relationship

    "A picture is worth a thousand words": the use of microscopy for imaging neuroinflammation

    No full text
    Since the first studies of the nervous system by the Nobel laureates Camillo Golgi and Santiago Ramon y Cajal using simple dyes and conventional light microscopes, microscopy has come a long way - to the most recent techniques that make it possible to perform images in live cells and animals, in health and disease. Many pathological conditions of the central nervous system have already been linked to inflammatory responses. In this scenario, several available markers and techniques can help imaging and unveil the neuroinflammatory process. Moreover, microscopy imaging techniques have become even more necessary to validate the large quantity of data generated in the era of "omics". This review aims to highlight how to assess neuroinflammation by using microscopy as a tool to provide specific details about the cell's architecture during neuroinflammatory conditions. First, we describe specific markers that have been used in light microscopy studies and that are widely applied to unravel and describe neuroinflammatory mechanisms in distinct conditions. Then, we discuss some important methodologies that facilitate the imaging of these markers, such as immunohistochemistry and immunofluorescence techniques. Emphasis will be given to studies using two-photon microscopy, an approach that revolutionized the real-time assessment of neuroinflammatory processes. Finally, some studies integrating omics with microscopy will be presented. The fusion of these techniques is developing, but the high amount of data generated from these applications will certainly improve the comprehension of the molecular mechanisms involved in neuroinflammation

    Zinc Supplementation Partially Decreases the Harmful Effects of a Cafeteria Diet in Rats but Does Not Prevent Intestinal Dysbiosis

    No full text
    Zinc (Zn) plays an important role in metabolic homeostasis and may modulate neurological impairment related to obesity. The present study aimed to evaluate the effect of Zn supplementation on the intestinal microbiota, fatty acid profile, and neurofunctional parameters in obese male Wistar rats. Rats were fed a cafeteria diet (CAF), composed of ultra-processed and highly caloric and palatable foods, for 20 weeks to induce obesity. From week 16, Zn supplementation was started (10 mg/kg/day). At the end of the experiment, we evaluated the colon morphology, composition of gut microbiota, intestinal fatty acids, integrity of the intestinal barrier and blood–brain barrier (BBB), and neuroplasticity markers in the cerebral cortex and hippocampus. Obese rats showed dysbiosis, morphological changes, short-chain fatty acid (SCFA) reduction, and increased saturated fatty acids in the colon. BBB may also be compromised in CAF-fed animals, as claudin-5 expression is reduced in the cerebral cortex. In addition, synaptophysin was decreased in the hippocampus, which may affect synaptic function. Our findings showed that Zn could not protect obese animals from intestinal dysbiosis. However, an increase in acetate levels was observed, which suggests a partial beneficial effect of Zn. Thus, Zn supplementation may not be sufficient to protect from obesity-related dysfunctions
    corecore