5 research outputs found

    Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    Get PDF
    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10-5). While the association was not genome-wide significant (p<1×10-7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10-6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance: These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. © 2011 Bol et al

    Donor variation in in vitro HIV-1 susceptibility of monocyte-derived macrophages

    No full text
    Primary human cells from different donors vary in their susceptibility to in vitro infection with HIV-1. In order to perform genetic analysis to identify host factors that affect HIV-1 susceptibility, it is important that a clear phenotype is defined. Here, we report a standardized method to Study variation for in vitro HIV-1 infection in monocyte-derived macrophages (MDM) from large numbers of individuals. With this assay, HIV-1 susceptibility of MDM from 489 different donors shows more than 3 log variation and a good correlation with the 32 base pair deletion in the CCR5 co-receptor (ccr5 Delta 32 genotype) of the donors. However, in 7 of 12 donors completely resistant to infection with CCR5-using HIV-1, this was not explained by the ccr5 Delta 32 genotype, showing evidence that other host factors are likely to influence HIV-1 replication in MDM. Infections with VSV-G pseudotyped HIV-1 indeed confirmed the existence of post-entry level restrictions in MDM. (C) 2009 Elsevier Inc. All rights reserve

    Long Noncoding RNA Expression Profiling in Normal B-Cell Subsets and Hodgkin Lymphoma Reveals Hodgkin and Reed-Sternberg Cell Specific Long Noncoding RNAs

    No full text
    Hodgkin lymphoma (HL) is a malignancy of germinal center (GC) B-cell origin. To explore the role of long noncoding RNAs (lncRNAs) in HL, we studied LncRNA expression patterns in normal B-cell subsets, HL cell lines, and tissues. Naive and memory B cells showed a highly similar lncRNA expression pattern, distinct from GC-B cells. Significant differential expression between I-IL and normal GC-B cells was observed for 475 lncRNA loci. For two validated lncRNAs, an enhanced expression was observed in HL, diffuse large 6-cell lymphoma, and lymphoblastoid cell lines. For a third lncRNA, increased expression levels were observed in HL and part of Burkitt lymphoma cell lines. RNA fluorescence in situ hybridization on primary HL tissues revealed a tumor cell specific expression pattern for all three lncRNAs. A potential cis-regulatory role was observed for 107 differentially expressed lncRNA-mRNA pairs localizing within a 60-kb region. Consistent with a cis-acting role, we showed a preferential nuclear localization for two selected candidates. Thus, we showed dynamic lncRNA expression changes during the transit of normal B cells through the pC reaction and widely deregulated lncRNA expression patterns in HL. Three lncRNAs showed a tumor cell specific expression pattern in HL tissues and might therefore be of value as a biomarker

    Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development

    No full text
    Clear cell renal cell carcinomas are characterized by 3p loss, and by inactivation of Von Hippel Lindau (VHL), a tumorsuppressor gene located at 3p25. Recently, SETD2, located at 3p21, was identified as a new candidate ccRCC tumor-suppressor gene. The combined mutational frequency in ccRCC tumors of VHL and SETD2 suggests that there are still undiscovered tumor-suppressor genes on 3p. We screened all genes on 3p for mutations in 10 primary ccRCC tumors using exome-sequencing. We identified inactivating mutations in VHL, PBRM1, and BAP1. Sequencing of PBRM1 in ccRCC-derived cell lines confirmed its frequent inactivation in ccRCC. PBRM1 encodes for BAF180, the chromatin targeting subunit of the SWI/SNF complex. BAP1 encodes for BRCA1 associated protein-1, involved in histone deubiquitination. Taken together, the accumulating data suggest an important role for aberrant chromatin regulation in ccRCC development. Hum Mutat 33:10591062, 2012. (c) 2012 Wiley Periodicals, Inc
    corecore