69 research outputs found

    Ankle Audiometry: A Clinical Test for the Enhanced Hearing Sensitivity for Body Sounds in Superior Canal Dehiscence Syndrome

    Get PDF
    Introduction: The aim of this study was to develop a clinical test for body sounds\u27 hypersensitivity in superior canal dehiscence syndrome (SCDS). Method: Case-control study, 20 patients affected by SCDS and body sounds\u27 hypersensitivity and 20 control matched subjects tested with a new test called ankle audiometry (AA). The AA consisted of a psychoacoustic hearing test in which the stimulus was substituted by a controlled bone vibration at 125, 250, 500, and 750 Hz, delivered at the medial malleolus by a steel spring-attached bone transducer prototype B250. For each subject, it was defined an index side (the other being non-index), the one with major symptoms in cases or best threshold for each tested frequency in controls. In 3 patients, the AA was measured before and after SCDS surgery. Results: The AA thresholds for index side were significantly lower in SCDS patients (115.6 \ub1 10.5 dB force level [FL]) than in control subjects (126.4 \ub1 8.56 dB FL). In particular, the largest difference was observed at 250 Hz (-16.5 dB). AA thresholds in patients were significantly lower at index side in comparison with non-index side (124.2 \ub1 11.4 dB FL). The response obtained with 250 Hz stimuli outperformed the other frequencies, in terms of diagnostic accuracy for SCDS. At specific thresholds\u27 levels (120 dB FL), AA showed relevant sensitivity (90%) and specificity (80%) for SCDS. AA did not significantly correlate to other clinical markers of SCDS such as the bone and air conducted hearing thresholds and the vestibular evoked myogenic potentials. The AA thresholds were significantly modified by surgical intervention, passing from 119.2 \ub1 9.7 to 130.4 \ub1 9.4 dB FL in 3 patients, following their relief in body sounds\u27 hypersensitivity. Conclusion: AA showed interesting diagnostic features in SCDS with significantly lower hearing thresholds in SCDS patients when compared to healthy matched subjects. Moreover, AA could identify the affected or more affected side in SCDS patients, with a significant threshold elevation after SCDS surgery, corresponding in body sounds\u27 hypersensitivity relief. Clinically, AA may represent a first objective measure of body sounds\u27 hypersensitivity in SCDS and, accordingly, be an accessible screening test for SCDS in not tertiary audiological centers

    Long-term follow-up and review of the Bone Conduction Implant

    Get PDF
    Active transcutaneous bone conduction devices are a type of bone conduction device developed to keep the skin intact and provide direct bone conduction stimulation. The Bone Conduction Implant (BCI) is such a device and has been implanted in 16 patients. The objective of this paper is to give a broad overview of the BCI development to the final results of 13 patients at 5-year follow-up. Follow-up of these patients included audiological performance investigations, questionnaires, as well as safety evaluation and objective functionality testing of the device. Among those audiological measure-ments were sound field warble tone thresholds, speech recognition threshold (SRT), speech recognition score (SRS) and signal to noise ratio threshold (SNR-threshold).The accumulated implant time for all 16 patients was 113 years in February 2022. During this time, no serious adverse events have occurred. The functional improvement for the 13 patients reported in this paper was on average 29.5 dB (average over 0.5, 1, 2 and 4 kHz), while the corresponding effective gain was-12.4 dB. The SRT improvement was 24.5 dB and the SRS improvement was 38.1%, while the aided SNR-threshold was on average -6.4 dB.It was found that the BCI can give effective and safe hearing rehabilitation for patients with conduc-tive and mild-to-moderate mixed hearing loss

    Bone Conduction Stimulated VEMP Using the B250 Transducer

    Get PDF
    Objective: Bone conduction (BC) stimulation is rarely used for clinical testing of vestibular evoked myogenic potentials (VEMPs) due to the limitations of conventional stimulation alternatives. The aim of this study is to compare VEMP using the new B250 transducer with the Minishaker and air conduction (AC) stimulation.Methods: Thirty normal subjects between 20 and 37 years old and equal gender distribution were recruited, 15 for ocular VEMP and 15 for cervical VEMP. Four stimulation conditions were compared: B250 on the mastoid (FM); Minishaker and B250 on the forehead (FZ); and AC stimulation using an insert earphone.Results: It was found that B250 at FM required a statistically significant lower hearing level than with AC stimulation, in average 41 dB and 35 dB lower for ocular VEMP and cervical VEMP, respectively, but gave longer n10 (1.1 ms) and n23 (1.6 ms). No statistical difference was found between B250 at FM and Minishaker at FZ.Conclusion: VEMP stimulated with B250 at FM gave similar response as the Minishaker at FZ and for a much lower hearing level than AC stimulation using insert earphones

    Effect of transducer attachment on vibration transmission and transcranial attenuation for direct drive bone conduction stimulation

    Get PDF
    Direct drive bone conduction devices (BCDs) are used to rehabilitate patients with conductive or mixed hearing loss by stimulating the skull bone directly, either with an implanted transducer (active transcutaneous BCDs), or through a skin penetrating abutment rigidly coupled to an external vibrating transducer (percutaneous BCDs). Active transcutaneous BCDs have been under development to overcome limitations of the percutaneous bone anchored hearing aid (BAHA), mainly related to the skin penetration. The attachment of a direct drive BCD to the skull bone can differ significantly between devices, and possibly influence the vibrations\u27 transmission to the cochleae. In this study, four different attachments are considered: (A) small-sized flat surface, (B) extended flat surface, (C) bar with a screw at both ends, and (D) standard bone anchored hearing aid screw. A, B, and C represent three active transcutaneous options, while D is for percutaneous applications. The primary aim of this study was to investigate how the different transcutaneous attachments (A, B, and C) affect the transmission of vibrations to the cochleae to the ipsilateral and the contralateral side. A secondary aim was to evaluate and compare transcranial attenuation (TA, ipsilateral minus contralateral signal level) between transcutaneous (A, B, and C) and percutaneous attachments (D). Measurements were performed on four human heads, measuring cochlear promontory velocity with a LDV (laser Doppler vibrometer) and sound pressure in the ear canal (ECSP) with an inserted microphone. The stimulation signal was a swept sine between 0.1 and 10 kHz. The comparison of ipsilateral transmission between transcutaneous adaptors A, B, and C was in agreement with previous findings, confirming that: (1) Adaptor C seems to give the most effective transmission for frequencies around 6 kHz but somewhat lower in the mid frequency range, and (2) keeping a smaller contact area seems to provide advantages compared to a more extended one. The same trends were seen ipsilaterally and contralaterally. The observed TA was similar for adaptors A, B, and C at the mastoid position, ranging -10-0 dB below 500 Hz, and 10-20 dB above. A lower TA was seen above 500 Hz when using adaptor D at the parietal position

    Three-Year Follow-Up with the Bone Conduction Implant

    Get PDF
    Background: The bone conduction implant (BCI) is an active transcutaneous bone conduction device where the transducer has direct contact to the bone, and the skin is intact. Sixteen patients have been implanted with the BCI with a planned follow-up of 5 years. This study reports on hearing, quality of life, and objective measures up to 36 months of follow-up in 10 patients. Method: Repeated measures were performed at fitting and after 1, 3, 6, 12, and 36 months including sound field warble tone thresholds, speech recognition thresholds in quiet, speech recognition score in noise, and speech-to-noise thresholds for 50% correct words with adaptive noise. Three quality of life questionnaires were used to capture the benefit from the intervention, appreciation from different listening situations, and the ability to interact with other people when using the BCI. The results were compared to the unaided situation and a Ponto Pro Power on a soft band. The implant functionality was measured by nasal sound pressure, and the retention force from the audio processor against the skin was measured using a specially designed audio processor and a force gauge. Results: Audiometry and quality of life questionnaires using the BCI or the Ponto Pro Power on a soft band were significantly improved compared to the unaided situation and the results were statistically supported. There was generally no significant difference between the two devices. The nasal sound pressure remained stable over the study period and the force on the skin from the audio processor was 0.71 \ub1 0.22 N (mean \ub1 1 SD). Conclusion: The BCI improves the hearing ability for tones and speech perception in quiet and in noise for the indicated patients. The results are stable over a 3-year period, and the patients subjectively report a beneficial experience from using the BCI. The transducer performance and contact to the bone is unchanged over time, and the skin area under the audio processor remains without complications during the 3-year follow-up

    Nasal sound pressure as objective verification of implant in active transcutaneous bone conduction devices

    Get PDF
    Objective: Active transcutaneous bone conduction devices consist of an external audio processor and an internal implant under intact skin. During the surgical procedure, it is important to verify the functionality of the implant before the surgical wound is closed. In a clinical study with the new bone conduction implant (BCI), the functionality of the implant was tested with an electric transmission test, where the output was the nasal sound pressure (NSP) recorded in the ipsilateral nostril. The same measurement was performed in all follow-up visits to monitor the implant\u27s functionality and transmission to bone over time. The objective of this study was to investigate the validity of the NSP method as a tool to objectively verify the implant\u27s performance intraoperatively, as well as to follow-up the implant\u27s performance over time. Design: Thirteen patients with the BCI were included, and the NSP measurement was part of the clinical study protocol. The implant was electrically stimulated with an amplitude-modulated signal generator using a swept sine 0.1-10 kHz. The NSP was measured with a probe tube microphone in the ipsilateral nostril. Results: The NSP during surgery was above the noise floor for most patients within the frequency interval 0.4-5 kHz, showing NSP values for expected normal transmission of a functioning implant. Inter-subject comparison showed large variability, but follow-up results showed only minor variability within each subject. Further investigation showed that the NSP was stable over time. Conclusion: The NSP method is considered applicable to verify the implant\u27s functionality during and after surgery. Such a method is important for implantable devices, but should be simplified and clinically adapted. Large variations between subjects were found, as well as smaller variability in intra-subject comparisons. As the NSP was found to not change significantly over time, stable transmission to bone, and implant functionality, were indicated

    Morphogenesis in robot swarms

    Get PDF
    Morphogenesis allows millions of cells to self-organize into intricate structures with a wide variety of functional shapes during embryonic development. This process emerges from local interactions of cells under the control of gene circuits that are identical in every cell, robust to intrinsic noise, and adaptable to changing environments. Constructing human technology with these properties presents an important opportunity in swarm robotic applications ranging from construction to exploration. Morphogenesis in nature may use two different approaches: hierarchical, top-down control or spontaneously self-organizing dynamics such as reaction-diffusion Turing patterns. Here, we provide a demonstration of purely self-organizing behaviors to create emergent morphologies in large swarms of real robots. The robots achieve this collective organization without any self-localization and instead rely entirely on local interactions with neighbors. Results show swarms of 300 robots that self-construct organic and adaptable shapes that are robust to damage. This is a step toward the emergence of functional shape formation in robot swarms following principles of self-organized morphogenetic engineering

    Introduction of innovations in joint arthroplasty: Recommendations from the 'EFORT implant and patient safety initiative'

    Get PDF
    With the implementation of the new MDR 2017/745 by the European Parliament, more robust clinical and pre-clinical data will be required due to a more stringent approval process. The EFORT Implant and Patient Safety Initiative WG1 ‘Introduction of Innovation’, combined knowledge of orthopaedic surgeons, research institutes, orthopaedic device manufacturers, patient representatives and regulatory authorities to develop a comprehensive set of recommendations for the introduction of innovations in joint arthroplasty within the boundaries of MDR 2017/745. Recommendations have been developed to address key questions about pre-clinical and clinical requirements for the introduction of new implants and implant-related instrumentation with the participation of a steering group, invited by the EFORT Board in dialogue with representatives from European National Societies and Speciality Societies. Different degrees of novelty and innovation were described and agreed on in relation to when surgeons can start, using implants and implant-related instrumentation routinely. Before any clinical phase of a new implant, following the pre-market clinical investigation or the equivalent device PMCF pathway, it is a common understanding that all appropriate pre-clinical testing (regulatory mandatory and evident state of the art) – which has to be considered for a specific device – has been successfully completed. Once manufacturers receive the CE mark for a medical device, it can be used in patients routinely when a clinical investigation has been conducted to demonstrate the conformity of devices according to MDR Article 62 or full equivalence for the technical, biological and clinical characteristics has been demonstrated (MDR, Annex XIV, Part A, 3.) and a PMCF study has been initiated

    VEMP using a new low-frequency bone conduction transducer

    Get PDF
    Objective: A new prototype bone conduction (BC) transducer B250, with an emphasized low-frequency response, is evaluated in vestibular evoked myogenic potential (VEMP) investigations. The aim was to compare cervical (cVEMP) and ocular (oVEMP) responses using tone bursts at 250 and 500 Hz with BC stimulation using the B250 and the conventional B81 transducer and by using air conduction (AC) stimulation. Methods: Three normal subjects were investigated in a pilot study. BC stimulation was applied to the mastoids in cVEMP, and both mastoid and forehead in oVEMP investigations. Results: BC stimulation was found to reach VEMP thresholds at considerably lower hearing levels than in AC stimulation (30-40 dB lower oVEMP threshold at 250 Hz). Three or more cVEMP and oVEMP responses at consecutive 5 dB increasing mastoid stimulation levels were only obtained in all subjects using the B250 transducer at 250 Hz. Similar BC thresholds were obtained for both ipsilateral and contralateral mastoid stimulation. Forehead stimulation, if needed, may require a more powerful vibration output. Conclusion: Viable VEMP responses can be obtained at a considerably lower hearing level with BC stimulation than by AC stimulation. The cVEMP and oVEMP responses were similar when measured on one side and with the B250 attached to both ipsilateral and contralateral mastoids
    • …
    corecore