408 research outputs found

    Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al

    Get PDF
    The 92-keV resonance in the 25Mg(p,γ)26Al reaction plays a key role in the production of 26Al at astrophysical burning temperatures of ≈100 MK in the Mg-Al cycle. However, the state can decay to feed either the ground, 26gAl, or isomeric state, 26mAl. It is the ground state that is critical as the source of cosmic γ rays. It is therefore important to precisely determine the ground-state branching fraction f0 of this resonance. Here we report on the identification of four γ-ray transitions from the 92-keV resonance, and determine the spin of the state and its ground-state branching fraction f0=0.52(2)stat(6)syst. The f0 value is the most precise reported to date, and at the lower end of the range of previously adopted values, implying a lower production rate of 26gAl and its cosmic 1809-keV γ rays.peerReviewe

    Analog E1 transitions and isospin mixing

    Get PDF
    We investigate whether isospin mixing can be determined in a model-independent way from the relative strength of E1 transitions in mirror nuclei. The specific examples considered are the A=31 and A=35 mirror pairs, where a serious discrepancy between the strengths of 7/2--->5/2+ transitions in the respective mirror nuclei has been observed. A theoretical analysis of the problem suggests that it ought to be possible to disentangle the isospin mixing in the initial and final states given sufficient information on experimental matrix elements. With this in mind, we obtain a lifetime for the relevant 7/2- state in 31S using the Doppler-shift attenuation method. We then collate the available information on matrix elements to examine the level of isospin mixing for both A=31 and A=35 mirror pairs

    Properties of excited states in Ge77

    Get PDF
    The nucleus Ge77 was studied through the Ge76(C13,C12)Ge77 reaction at a sub-Coulomb energy. The angular distributions of γ rays depopulating excited states in Ge77 were measured in order to constrain spin and parity assignments. Some of these assignments are of use in connection with neutrinoless double beta decay, where the population of states near the Fermi surface of Ge76 was recently explored using transfer reactions

    Disruption of mouse ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities and senescence.

    Get PDF
    BACKGROUND: The structure-specific ERCC1/XPF endonuclease complex that contains the ERCC1 and XPF subunits is implicated in the repair of two distinct types of lesions in DNA: nucleotide excision repair (NER) for ultraviolet-induced lesions and bulky chemical adducts; and recombination repair of the very genotoxic interstrand cross-links. RESULTS: Here, we present a detailed analysis of two types of mice with mutations in ERCC1, one in which the gene is 'knocked out', and one in which the encoded protein contains a seven amino-acid carboxy-terminal truncation. In addition to the previously reported symptoms of severe runting, abnormalities of liver nuclei and greatly reduced lifespan (which appeared less severe in the truncation mutant), both types of ERCC1-mutant mouse exhibited an absence of subcutaneous fat, early onset of ferritin deposition in the spleen, kidney malfunction, gross abnormalities of ploidy and cytoplasmic invaginations in nuclei of liver and kidney, and compromised NER and cross-link repair. We also found that heterozygosity for ERCC1 mutations did not appear to provide a selective advantage for chemically induced tumorigenesis. An important clue to the cause of the very severe ERCC1-mutant phenotypes is our finding that ERCC1-mutant cells undergo premature replicative senescence, unlike cells from mice with a defect only in NER. CONCLUSIONS: Our results strongly suggest that the accumulation in ERCC1-mutant mice of endogenously generated DNA interstrand cross-links, which are normally repaired by ERCC1-dependent recombination repair, underlies both the early onset of cell cycle arrest and polyploidy in the liver and kidney. Thus, our work provides an insight into the molecular basis of ageing and highlights the role of ERCC1 and interstrand DNA cross-links

    Two-quasiparticle structures and isomers in Er168, Er170, and Er172

    Get PDF
    The stable and neutron-rich isotopes Er168, Er170, and Er172 have been studied with Gammasphere using inelastic excitation with energetic Xe136 beams. The previously assigned structures based on the proposed Kπ=4- isomeric intrinsic states in both Er168 and Er170 have been re-evaluated and an equivalent band identified in Er172. In Er170, the identification of a Kπ=6- band with transitions close in energy to those of the 4 - band leads to a modified interpretation, since the overlap would have compromised previous analyses. The gK-gR values for the 4- bands deduced from the in-band γ-ray intensities for the sequence of isotopes suggest a predominantly two-neutron configuration in Er168, an equally mixed two-neutron, two-proton configuration in Er170, and a two-proton configuration in Er172. A comprehensive decay scheme for the previously proposed 6+ isomer in Er172 has also been established, as well as band structures built on this isomer that closely resemble the 6+ and 7- two-neutron structures known in the isotone Yb174. The implied K hindrances are discussed. The main decay path of the 6+ isomer occurs through the newly identified 4- isomer. The measured lifetimes of the 4 - and 6+ isomers in Er172 are 57(3) and 822(90) ns, respectively. Multiquasiparticle calculations support the suggested configuration changes across the isotopic chain

    Lifetime of the KÏ€=8- isomer in the neutron-rich nucleus Er174, and N=106 E1 systematics

    Get PDF
    Chopped-beam techniques and γ-ray spectroscopy with Gammasphere have been used to measure the lifetime of the 1112-keV 8- isomeric state in Er174. The value obtained of τ=5.8(4) s corresponds to a reduced hindrance of fν=98 for the 163-keV E1 transition to the 8+ state of the ground-state band, in good agreement with the systematics of the corresponding E1 strengths in the N=106 isotones. The K-mixing in the 8- states is calculated in the context of the particle-rotor model and used to extract the underlying reduced hindrances

    Multiple octupole-type band structures in Th220: Reflection-asymmetric tidal waves?

    Get PDF
    The Th220 level scheme has been considerably extended from an experiment using the Mg26+Pt198 reaction at 128 MeV. The evaporation residues from this very fissile system were selected with the HERCULES detector system and residue-gated γ rays were measured with Gammasphere. The simplex feature (alternating-parity levels) persists up to the highest spins observed (23), but the nucleus exhibits a more vibrational-like behavior than the heavier Th isotopes. In addition, a doubling of the negative-parity, odd-spin states is seen as well as a staggering of the B(E1)/B(E2) ratios. A new interpretation based on a picture of tidal waves on a reflection-asymmetric nuclear surface is proposed

    Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni

    Get PDF
    © 2016 The Author(s) Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z=28, N=40), the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0+ states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0+ states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions. The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons

    The influence of νh11/2 occupancy on the magnetic moments of collective 21+ states in A∼100 fission fragments

    Get PDF
    AbstractThe magnetic moments of Iπ=21+ states in even–even A∼100 fission fragments have been measured using the Gammasphere array, using the technique of time-integral perturbed angular correlations. The data are interpreted within the context of the interacting boson model (IBA2) leading to the suggestion of a strong νh11/2 component in the deformed 21+ states of this region
    • …
    corecore