5 research outputs found

    Lower allergen levels in hypoallergenic Curly Horses? A comparison among breeds by measurements of horse allergens in hair and air samples.

    No full text
    BackgroundExposure to horses can cause severe allergic reactions in sensitized individuals. The breed, American Bashkir Curly Horse is categorized as hypoallergenic, primarily due to reports of allergic patients experiencing fewer symptoms while handling this special breed. The possible reasons for this phenomenon could be lower allergen production and/or reduced allergen release into the air because of increased sebum content in their skin and hair compared to other breeds. Therefore, the aim of the current study was to compare different horse breeds in relation to allergen content in hair and airborne dust samples.MethodsIn total, 224 hair samples from 32 different horse breeds were investigated. Personal nasal filters were used to collect airborne dust during the grooming of 20 Curly Horses and 20 Quarter Horses. Quantitative analysis of all samples was performed using two newly developed immunoassays for the detection of horse dander (HD) antigens and the major allergen Equ c 1 and the commercial assay for Equ c 4. Results were analyzed using multiple linear regression models for hair samples and the Mann Whitney U test for airborne samples.ResultsHorse antigen and allergen levels differed up to four orders of magnitude between individual animals. Despite enormous variability, levels of HD antigen, Equ c 1 and Equ c 4 in hair were significantly related to the breed and gender combined with the castration status of male animals. Curly Horses had significantly higher concentrations of all three tested parameters compared to the majority of the investigated breeds (medians: 11800 μg/g for HD antigen, 2400 μg/g for Equ c 1, and 258 kU/g for Equ c 4). Tinker Horses, Icelandic Horses and Shetland Ponies were associated with approximately 7-fold reduced levels of HD antigen and Equ c 1, and up to 25-fold reduced levels of Equ c 4 compared to Curly Horses. Compared to mares, stallions displayed increased concentrations of HD antigens, Equ c 1 and Equ c 4 by a factor 2.2, 3.5 and 6.7, respectively. No difference was observed between mares and geldings. No differences in airborne allergen concentrations collected with personal nasal filters during grooming were found between Curly and Quarter Horses.ConclusionBreed and castration status had a significant influence on the antigen and allergen levels of horse hair. However, these differences were smaller than the wide variability observed among individual horses. Compared to other breeds, Curly Horses were not associated with lower allergen levels in hair and in air samples collected during grooming. Our approach provides no molecular explanation why Curly Horses are considered to be hypoallergenic

    Mammalian derived lipocalin and secretoglobin respiratory allergens strongly bind ligands with potentially immune modulating properties.

    Full text link
    peer reviewedAllergens from furry animals frequently cause sensitization and respiratory allergic diseases. Most relevant mammalian respiratory allergens belong either to the protein family of lipocalins or secretoglobins. Their mechanism of sensitization remains largely unresolved. Mammalian lipocalin and secretoglobin allergens are associated with a function in chemical communication that involves abundant secretion into the environment, high stability and the ability to transport small volatile compounds. These properties are likely to contribute concomitantly to their allergenic potential. In this study, we aim to further elucidate the physiological function of lipocalin and secretoglobin allergens and link it to their sensitizing capacity, by analyzing their ligand-binding characteristics. We produced eight major mammalian respiratory allergens from four pet species in E.coli and compared their ligand-binding affinities to forty-nine ligands of different chemical classes by using a fluorescence-quenching assay. Furthermore, we solved the crystal-structure of the major guinea pig allergen Cav p 1, a typical lipocalin. Recombinant lipocalin and secretoglobin allergens are of high thermal stability with melting temperatures ranging from 65 to 90°C and strongly bind ligands with dissociation constants in the low micromolar range, particularly fatty acids, fatty alcohols and the terpene alcohol farnesol, that are associated with potential semiochemical and/or immune-modulating functions. Through the systematic screening of respiratory mammalian lipocalin and secretoglobin allergens with a large panel of potential ligands, we observed that total amino acid composition, as well as cavity shape and volume direct affinities to ligands of different chemical classes. Therefore, we were able to categorize lipocalin allergens over their ligand-binding profile into three sub-groups of a lipocalin clade that is associated with functions in chemical communication, thus strengthening the function of major mammalian respiratory allergens as semiochemical carriers. The promiscuous binding capability of hydrophobic ligands from environmental sources warrants further investigation regarding their impact on a molecule's allergenicity

    Proteomic analysis of horse hair extracts provides no evidence for the existence of a hypoallergenic Curly Horse breed

    No full text
    Abstract Background The American Bashkir Curly Horse is frequently advertised to horse‐allergic riders and claimed to be a so‐called hypoallergenic breed that elicits fewer symptoms. Previous studies quantifying selected allergens in different breeds did not find a reduced allergen content in Curly Horses. Here, we provide a comprehensive proteomic analysis of horse hair extracts and a molecular analysis of the major allergen Equ c 1 with the aim of identifying differences in the Curly Horse breed that might explain their presumed reduced allergenic potential. Methods Horse hair extracts were prepared from Curly and American Quarter Horse breeds, separated by gender and castration status, extracts from other breeds served as controls. Extracts and native Equ c 1 (nEqu c 1) were analyzed by mass spectrometry. IgE‐binding capacities of nEqu c 1 and its recombinant variants were tested by ELISA using sera of patients sensitized to horses. Structures and ligand binding abilities were analyzed by computational modeling and fluorescence quenching assays. Results All known respiratory horse allergens are present in hair extracts of Curly and Quarter Horses and share identical allergen‐specific peptides. Lipocalin allergens are the most abundant proteins in horse hair extracts and contain several post‐translational modifications. We identified two new variants of Equ c 1 that have similar IgE‐binding capacities but show structural differences in their binding cavities and altered ligand binding behavior. There are no differences in IgE‐binding of Equ c 1 derived from Curly Horses compared to other horse breeds. Conclusion Our data do not support the claim that Curly Horses are less allergenic than other breeds

    Lower allergen levels in hypoallergenic Curly Horses?

    No full text
    Background:\textbf {Background:} Exposure to horses can cause severe allergic reactions in sensitized individuals. The breed, American Bashkir Curly Horse is categorized as hypoallergenic, primarily due to reports of allergic patients experiencing fewer symptoms while handling this special breed. The possible reasons for this phenomenon could be lower allergen production and/or reduced allergen release into the air because of increased sebum content in their skin and hair compared to other breeds. Therefore, the aim of the current study was to compare different horse breeds in relation to allergen content in hair and airborne dust samples. Methods:\textbf {Methods:} In total, 224 hair samples from 32 different horse breeds were investigated. Personal nasal filters were used to collect airborne dust during the grooming of 20 Curly Horses and 20 Quarter Horses. Quantitative analysis of all samples was performed using two newly developed immunoassays for the detection of horse dander (HD) antigens and the major allergen Equ c 1 and the commercial assay for Equ c 4. Results were analyzed using multiple linear regression models for hair samples and the Mann Whitney U test for airborne samples. Results:\textbf {Results:} Horse antigen and allergen levels differed up to four orders of magnitude between individual animals. Despite enormous variability, levels of HD antigen, Equ c 1 and Equ c 4 in hair were significantly related to the breed and gender combined with the castration status of male animals. Curly Horses had significantly higher concentrations of all three tested parameters compared to the majority of the investigated breeds (medians: 11800 μ\mug/g for HD antigen, 2400 μ\mug/g for Equ c 1, and 258 kU/g for Equ c 4). Tinker Horses, Icelandic Horses and Shetland Ponies were associated with approximately 7-fold reduced levels of HD antigen and Equ c 1, and up to 25-fold reduced levels of Equ c 4 compared to Curly Horses. Compared to mares, stallions displayed increased concentrations of HD antigens, Equ c 1 and Equ c 4 by a factor 2.2, 3.5 and 6.7, respectively. No difference was observed between mares and geldings. No differences in airborne allergen concentrations collected with personal nasal filters during grooming were found between Curly and Quarter Horses. Conclusion:\textbf {Conclusion:} Breed and castration status had a significant influence on the antigen and allergen levels of horse hair. However, these differences were smaller than the wide variability observed among individual horses. Compared to other breeds, Curly Horses were not associated with lower allergen levels in hair and in air samples collected during grooming. Our approach provides no molecular explanation why Curly Horses are considered to be hypoallergenic

    EAACI Molecular Allergology User's Guide 2.0

    Get PDF
    Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.Peer reviewe
    corecore