1,014 research outputs found

    Derivation of an optimal directivity pattern for sweet spot widening in stereo sound reproduction

    Get PDF
    In this paper the correction of the degradation of the stereophonic illusion during sound reproduction due to off-center listening is investigated. The main idea is that the directivity pattern of a loudspeaker array should have a well-defined shape such that a good stereo reproduction is achieved in a large listening area. Therefore, a mathematical description to derive an optimal directivity pattern lopt that achieves sweet spot widening in a large listening area for stereophonic sound applications is described. This optimal directivity pattern is based on parametrized time/intensity trading data coming from psycho-acoustic experiments within a wide listening area. After the study, the required digital FIR filters are determined by means of a least-squares optimization method for a given stereo base setup (two pair of drivers for the loudspeaker arrays and 2.5-m distance between loudspeakers), which radiate sound in a broad range of listening positions in accordance with the derived lopt. Informal listening tests have shown that the lopt worked as predicted by the theoretical simulations. They also demonstrated the correct central sound localization for speech and music for a number of listening positions. This application is referred to as "Position-Independent (PI) stereo.

    On the absorbing-state phase transition in the one-dimensional triplet creation model

    Full text link
    We study the lattice reaction diffusion model 3A -> 4A, A -> 0 (``triplet creation") using numerical simulations and n-site approximations. The simulation results provide evidence of a discontinuous phase transition at high diffusion rates. In this regime the order parameter appears to be a discontinuous function of the creation rate; no evidence of a stable interface between active and absorbing phases is found. Based on an effective mapping to a modified compact directed percolation process, shall nevertheless argue that the transition is continuous, despite the seemingly discontinuous phase transition suggested by studies of finite systems.Comment: 23 pages, 11 figure

    Reactivation of Latent Tuberculosis in Cynomolgus Macaques Infected with SIV Is Associated with Early Peripheral T Cell Depletion and Not Virus Load

    Get PDF
    HIV-infected individuals with latent Mycobacterium tuberculosis (Mtb) infection are at significantly greater risk of reactivation tuberculosis (TB) than HIV-negative individuals with latent TB, even while CD4 T cell numbers are well preserved. Factors underlying high rates of reactivation are poorly understood and investigative tools are limited. We used cynomolgus macaques with latent TB co-infected with SIVmac251 to develop the first animal model of reactivated TB in HIV-infected humans to better explore these factors. All latent animals developed reactivated TB following SIV infection, with a variable time to reactivation (up to 11 months post-SIV). Reactivation was independent of virus load but correlated with depletion of peripheral T cells during acute SIV infection. Animals experiencing reactivation early after SIV infection (<17 weeks) had fewer CD4 T cells in the periphery and airways than animals reactivating in later phases of SIV infection. Co-infected animals had fewer T cells in involved lungs than SIV-negative animals with active TB despite similar T cell numbers in draining lymph nodes. Granulomas from these animals demonstrated histopathologic characteristics consistent with a chronically active disease process. These results suggest initial T cell depletion may strongly influence outcomes of HIV-Mtb co-infection

    Theory of the NO+CO surface reaction model

    Full text link
    We derive a pair approximation (PA) for the NO+CO model with instantaneous reactions. For both the triangular and square lattices, the PA, derived here using a simpler approach, yields a phase diagram with an active state for CO-fractions y in the interval y_1 < y < y_2, with a continuous (discontinuous) phase transition to a poisoned state at y_1 (y_2). This is in qualitative agreement with simulation for the triangular lattice, where our theory gives a rather accurate prediction for y_2. To obtain the correct phase diagram for the square lattice, i.e., no active state, we reformulate the PA using sublattices. The (formerly) active regime is then replaced by a poisoned state with broken symmetry (unequal sub- lattice coverages), as observed recently by Kortluke et al. [Chem. Phys. Lett. 275, 85 (1997)]. In contrast with their approach, in which the active state persists, although reduced in extent, we report here the first qualitatively correct theory of the NO+CO model on the square lattice. Surface diffusion of nitrogen can lead to an active state in this case. In one dimension, the PA predicts that diffusion is required for the existence of an active state.Comment: 15 pages, 9 figure

    Path-integral representation for a stochastic sandpile

    Full text link
    We introduce an operator description for a stochastic sandpile model with a conserved particle density, and develop a path-integral representation for its evolution. The resulting (exact) expression for the effective action highlights certain interesting features of the model, for example, that it is nominally massless, and that the dynamics is via cooperative diffusion. Using the path-integral formalism, we construct a diagrammatic perturbation theory, yielding a series expansion for the activity density in powers of the time.Comment: 22 pages, 6 figure

    Phase diagram of a probabilistic cellular automaton with three-site interactions

    Full text link
    We study a (1+1) dimensional probabilistic cellular automaton that is closely related to the Domany-Kinzel (DKCA), but in which the update of a given site depends on the state of {\it three} sites at the previous time step. Thus, compared with the DKCA, there is an additional parameter, p3p_3, representing the probability for a site to be active at time tt, given that its nearest neighbors and itself were active at time t−1t-1. We study phase transitions and critical behavior for the activity {\it and} for damage spreading, using one- and two-site mean-field approximations, and simulations, for p3=0p_3=0 and p3=1p_3=1. We find evidence for a line of tricritical points in the (p1,p2,p3p_1, p_2, p_3) parameter space, obtained using a mean-field approximation at pair level. To construct the phase diagram in simulations we employ the growth-exponent method in an interface representation. For p3=0p_3 =0, the phase diagram is similar to the DKCA, but the damage spreading transition exhibits a reentrant phase. For p3=1p_3=1, the growth-exponent method reproduces the two absorbing states, first and second-order phase transitions, bicritical point, and damage spreading transition recently identified by Bagnoli {\it et al.} [Phys. Rev. E{\bf 63}, 046116 (2001)].Comment: 15 pages, 7 figures, submited to PR

    Interface Scaling in the Contact Process

    Full text link
    Scaling properties of an interface representation of the critical contact process are studied in dimensions 1 - 3. Simulations confirm the scaling relation beta_W = 1 - theta between the interface-width growth exponent beta_W and the exponent theta governing the decay of the order parameter. A scaling property of the height distribution, which serves as the basis for this relation, is also verified. The height-height correlation function shows clear signs of anomalous scaling, in accord with Lopez' analysis [Phys. Rev. Lett. 83, 4594 (1999)], but no evidence of multiscaling.Comment: 10 pages, 9 figure

    Asymptotic behavior of the order parameter in a stochastic sandpile

    Full text link
    We derive the first four terms in a series for the order paramater (the stationary activity density rho) in the supercritical regime of a one-dimensional stochastic sandpile; in the two-dimensional case the first three terms are reported. We reorganize the pertubation theory for the model, recently derived using a path-integral formalism [R. Dickman e R. Vidigal, J. Phys. A 35, 7269 (2002)], to obtain an expansion for stationary properties. Since the process has a strictly conserved particle density p, the Fourier mode N^{-1} psi_{k=0} -> p, when the number of sites N -> infinity, and so is not a random variable. Isolating this mode, we obtain a new effective action leading to an expansion for rho in the parameter kappa = 1/(1+4p). This requires enumeration and numerical evaluation of more than 200 000 diagrams, for which task we develop a computational algorithm. Predictions derived from this series are in good accord with simulation results. We also discuss the nature of correlation functions and one-site reduced densities in the small-kappa (large-p) limit.Comment: 18 pages, 5 figure

    Individualized prediction of three- and six-year outcomes of psychosis in a longitudinal multicenter study:a machine learning approach

    Get PDF
    Schizophrenia and related disorders have heterogeneous outcomes. Individualized prediction of long-term outcomes may be helpful in improving treatment decisions. Utilizing extensive baseline data of 523 patients with a psychotic disorder and variable illness duration, we predicted symptomatic and global outcomes at 3-year and 6-year follow-ups. We classified outcomes as (1) symptomatic: in remission or not in remission, and (2) global outcome, using the Global Assessment of Functioning (GAF) scale, divided into good (GAF &gt;= 65) and poor (GAF &lt; 65). Aiming for a robust and interpretable prediction model, we employed a linear support vector machine and recursive feature elimination within a nested cross-validation design to obtain a lean set of predictors. Generalization to out-of-study samples was estimated using leave-one-site-out cross-validation. Prediction accuracies were above chance and ranged from 62.2% to 64.7% (symptomatic outcome), and 63.5-67.6% (global outcome). Leave-one-site-out cross-validation demonstrated the robustness of our models, with a minor drop in predictive accuracies of 2.3% on average. Important predictors included GAF scores, psychotic symptoms, quality of life, antipsychotics use, psychosocial needs, and depressive symptoms. These robust, albeit modestly accurate, long-term prognostic predictions based on lean predictor sets indicate the potential of machine learning models complementing clinical judgment and decision-making. Future model development may benefit from studies scoping patient's and clinicians' needs in prognostication.</p

    Numerical Study of a Field Theory for Directed Percolation

    Full text link
    A numerical method is devised for study of stochastic partial differential equations describing directed percolation, the contact process, and other models with a continuous transition to an absorbing state. Owing to the heightened sensitivity to fluctuationsattending multiplicative noise in the vicinity of an absorbing state, a useful method requires discretization of the field variable as well as of space and time. When applied to the field theory for directed percolation in 1+1 dimensions, the method yields critical exponents which compare well against accepted values.Comment: 18 pages, LaTeX, 6 figures available upon request LC-CM-94-00
    • …
    corecore