2,942 research outputs found

    EURO-ECOLE: Assessment of the Bioavailability and Potential Ecological Effects of Copper in European Surface Waters ; subproject 4: Evaluation and improvement of the ecological relevance of laboratory generated toxicity data

    Get PDF
    This report summarizes the acute and chronic toxicity of copper to algae, Daphnia and a few other freshwater species in standard laboratory test water and a wide range of natural surface waters (collected across Europe), with a wide range of pH, dissolved organic carbon (DOC) concentration and hardness. These data can be used for validation of bioavailability models such as the biotic ligand model (BLM)

    Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions

    Get PDF
    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions

    Construction of data-driven models to predict the occurrence of planktonic species in the North-Sea

    Get PDF
    Marine habitat suitability models typically predict the potential distribution of organisms based on basic abiotic variables such as salinity, oxygen concentrations, temperature fluctuations (Gogina & Zettler, 2010) or sediment class information (Degraer et al., 2008; Willems et al., 2008). Recently, Dachs & Méjanelle (2010) claimed that the modification of biota composition due to marine pollution is a factor to be taken into account in marine habitat suitability models. Although the anthropogenic pressure on the environment has been exponentially increasing during the last six decades (Dachs & Méjanelle, 2010), the global effect of human inputs on oceanic phytoplankton remains unknown (Echeveste et al., 2010). A limited number of studies have assessed the impact of anthropogenic stressors on phytoplankton in marine environments at a global level (Faust et al., 2003; Magnusson et al.,2008). In order to fill this knowledge gap, this research tries to determine to what extent pollution data can be used to predict the occurrence of the phytoplanktonic organisms compared to basic abiotic variables. Here we explored this issue by developing classification trees relating physical-chemical variables with the occurrence of the potential harmful toxic algae Odontella sinensis
    corecore