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INTRODUCTION  

 
Marine habitat suitability models typically predict the potential distribution 
of organisms based on basic abiotic variables such as salinity, oxygen con-
centrations, temperature fluctuations (Gogina & Zettler, 2010) or sediment 
class information (Degraer et al., 2008; Willems et al., 2008). Recently, 
Dachs & Méjanelle (2010) claimed that the modification of biota composition 
due to marine pollution is a factor to be taken into account in marine habitat 
suitability models.  
Although the anthropogenic pressure on the environment has been exponen-
tially increasing during the last six decades (Dachs & Méjanelle, 2010), the 
global effect of human inputs on oceanic phytoplankton remains unknown 
(Echeveste et al., 2010). A limited number of studies have assessed the im-
pact of anthropogenic stressors on phytoplankton in marine environments at 

a global level (Faust et al., 2003; Magnusson et al.,2008). 
 
In order to fill this knowledge gap, this research tries to determine to what 
extent pollution data can be used to predict the occurrence of the phytop-
lanktonic organisms compared to basic abiotic variables. Here we explored 
this issue by developing classification trees relating physical-chemical va-
riables with the occurrence of the potential harmful toxic algae Odontella 
sinensis.  

 

MATERIAL AND METHODS 

 
Study area and data collection 
The study area included parts of the North Sea, Atlantic Ocean and the Bal-
tic Sea bounded by the 70th and 30th parallel north and 45th west and 35th 
east meridian. This area was divided into compartments of 1 by 1 degree 

longitude. For each of these compartments we verified if O. sinensis was 
observed in the year 1990. The compartments received the label 1 if the spe-
cies was present and the label 0 if it was absent in that year. Subsequently, 
the dataset was extended with the corresponding physical-chemical charac-
teristics for each of the compartments. These physical-chemical characteris-
tics included both the basic abiotic variables salinity, water temperature and 
secchi depth and pollution data like sediment copper, lead, mercury and iron 
concentrations (Table 1). The resulting dataset consisted of 59 cases with the 

occurrence of the O. sinensis and the corresponding physical-chemical 

measurements for each compartment. 
Three different classification trees were constructed. The first tree predicts 

the occurrence of O. sinensis based on basic abiotic variables. The second 
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model relates the occurrence of O. sinensis with pollution data, whereas the 

final model makes similar predictions using both data types.  
  

Model induction and evaluation 
Classification trees are hierarchical structures, where the internal nodes 
contain tests on the input variables. Each branch of an internal test corre-

sponds to an outcome of the test and the prediction of the occurrence of O. 

sinensis is stored in a leaf. By implementing independent physical-chemical 
input variables and following the hierarchical structure of the tree, these 

tests lead to the associated predicted occurrence of O. sinensis. For each 

internal node that is encountered on the path, the associated test in the 
node is applied. Depending on the outcome of the test, the path continues 
along the corresponding branch, goes to the left if the answer is ‘yes’ or goes 
to the right if the answer is ‘no’. The resulting prediction of the tree is taken 
from the leaf at the end of the path (Everaert et al., in press). 
Classification trees were built through applying the R package rpart (R De-
velopment Core Team, 2009).  
 
Models were evaluated using mathematical criteria and ecological insight. 
The performances of the classification tree were assessed by the determina-
tion coefficient (R²) and the percentage of Correctly Classified Instances 
(CCI). The determination coefficient is a measure of the goodness of fit of the 
regression model. Its value is always between 0 and 1, a value close to 1 
indicates a better model prediction. In order to have a satisfactory model 
performance, the CCI should reach at least 70% (Gabriels et al., 2007). 

 
Table 1. Observed characteristics in the study area in 1990 based on a 1 by 
1 degree longitude grid.  

Variable Abbreviation Unit Matrix Minimum Maximum Mean Standard 
deviation 

A) Basic abiotic variables    
Salinity / psu Pelagic 21.1 35.8 33.9 2.4 
Water Temperature Temperature °C Pelagic 8.9 16.8 12.0 1.7 
Secchi depth  Secchi m Pelagic 0.5 11.0 5.8 3.2 

 
B) Pollution data 

     

Copper Cu mg/kg Sediment 1.6 28.9 6.3 6.2 
Lead Pb mg/kg Sediment 4.5 68.7 17.4 14.6 
Mercury Hg mg/kg Sediment 0.01 0.33 0.04 0.05 
Iron Fe mg/kg Sediment 3100 44800 11740 9488 

 

RESULTS AND DISCUSSION 
 
The mathematical criteria evaluating the classification trees are summarized 
in detail in Table 2. 

 

Models based on basic abiotic variables 
The first model has a R² of 0.43 and a CCI of 67% (Table 2). This model pre-
dicts the occurrence of the species exclusively based on the basic abiotic 
variables. All three predictors are used to predict the occurrence of O. sinen-



 

sis (Figure 1). At the root, the
influence. In case the salinity exceeds 35.53 
dicted as absent, below this salinity
ture and secchi depth

 

 Figure 1. Classification tree relating the occurrence of 

with a selection of basic abiotic variables
 

Models based on pollution data 
The second model uses pollution data to predict the occurrence of 
sis. Compared to the first model the 
based on R² but increased according to the CCI (Table 2). 
The first node of the second classification model shows that the sediment 
copper concentration is the most important predictor (Figure 2). If the co
centration of this metal exceeds 8.74 mg/kg 

absent, below this threshold it presence depends on the lead concentration.
Based on this exploratory study an explanation for copper being a predictor 
cannot be given at this stage.

Figure 2. Classification tree relating the occurrence of 

with a selection of pollution data

 
Table 2. Performance evaluators of the classification trees

Classification tree 

Figure 1 

Figure 2 

Figure 3 
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At the root, the salinity of the marine environment has a major 
influence. In case the salinity exceeds 35.53 psu, O. sinensis will be pr
dicted as absent, below this salinity the occurrence depends on the t

ecchi depth. 

 
Classification tree relating the occurrence of Odontella sinensis

with a selection of basic abiotic variables. 

Models based on pollution data  
uses pollution data to predict the occurrence of O.

. Compared to the first model the performance of the model decreased 
based on R² but increased according to the CCI (Table 2).  
The first node of the second classification model shows that the sediment 
copper concentration is the most important predictor (Figure 2). If the co

this metal exceeds 8.74 mg/kg O. sinensis will be predicted as 

absent, below this threshold it presence depends on the lead concentration.
Based on this exploratory study an explanation for copper being a predictor 
cannot be given at this stage. 

Classification tree relating the occurrence of Odontella sinensis

pollution data. 

Performance evaluators of the classification trees 

Predictors R²

Basic abiotic variables 0.43

Pollution data 0.37

Basic abiotic variables and Pollution data  0.59

salinity of the marine environment has a major 
ill be pre-

the occurrence depends on the tempera-
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O. sinen-
performance of the model decreased 

The first node of the second classification model shows that the sediment 
copper concentration is the most important predictor (Figure 2). If the con-

will be predicted as 

absent, below this threshold it presence depends on the lead concentration. 
Based on this exploratory study an explanation for copper being a predictor 
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R² CCI 

0.43 67% 

0.37 73% 

0.59 73% 



 

Models based on basic 
The third model makes
pollution data. The first 
35.53 psu, O. sinensis
currence depends on the 
The resulting classification tree integrates the 
(Figure 1; Figure 2) as the model consists of the 
first model and the second model.
tree with better performance
73%).  
Maximizing R² and CCI does not always result in the most optimal model. In 
further research additional indicators like the 
(AIC) will be used as
tional predictor is worth the decreased degrees of freedom and increased 
complexity (Akaike, 

 
Figure 3. Classification tree relating the occurrence of 
with a selection of basic abiotic variables and pollution data
 

CONCLUSION 
Pollution data can be used to predict the presence of phyto
cies (in this case Odontella sinensis
performance were those 
ta. We concluded that 
modelling performances, compared to the use of
pollution data separately
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Models based on basic abiotic variables and pollution data  
kes predictions based on both basic abiotic variables 

The first knowledge rule says that if the salinity exceeds 
sinensis will be predicted as absent, in all other cases

currence depends on the copper and lead concentrations (Figure 3). 
The resulting classification tree integrates the best of both previous trees 
(Figure 1; Figure 2) as the model consists of the most selective rule of the 

second model. This adjustment results in a classification 
tree with better performance than the previous models (R² = 0.59; CCI = 

Maximizing R² and CCI does not always result in the most optimal model. In 
further research additional indicators like the Akaike's Information Criterion 

as it helps to decide if the improved fit caused by an add
s worth the decreased degrees of freedom and increased 

(Akaike, 1973). 

Classification tree relating the occurrence of Odontella sinensis
with a selection of basic abiotic variables and pollution data. 

Pollution data can be used to predict the presence of phytoplankto
Odontella sinensis). The classification trees with the highest 

performance were those combining basic abiotic variables and pollution d
We concluded that pollution data may have a beneficial effect on the 

modelling performances, compared to the use of basic abiotic variables 
separately. 
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