4,159 research outputs found

    Large quantum fluctuations in the strongly coupled spin-1/2 chains of green dioptase: a hidden message from birds and trees

    Full text link
    The green mineral dioptase Cu6Si6O18(H2O)6 has been known since centuries and plays an important role in esoteric doctrines. In particular, the green dioptase is supposed to grant the skill to speak with trees and to understand the language of birds. Armed with natural samples of dioptase, we were able to unravel the magnetic nature of the mineral (presumably with hidden support from birds and trees) and show that strong quantum fluctuations can be realized in an essentially framework-type spin lattice of coupled chains, thus neither frustration nor low-dimensionality are prerequisites. We present a microscopic magnetic model for the green dioptase. Based on full-potential DFT calculations, we find two relevant couplings in this system: an antiferromagnetic coupling J_c, forming spiral chains along the hexagonal c axis, and an inter-chain ferromagnetic coupling J_d within structural Cu2O6 dimers. To refine the J_c and J_d values and to confirm the proposed spin model, we perform quantum Monte-Carlo simulations for the dioptase spin lattice. The derived magnetic susceptibility, the magnetic ground state, and the sublattice magnetization are in remarkably good agreement with the experimental data. The refined model parameters are J_c = 78 K and J_d = -37 K with J_d/J_c ~ -0.5. Despite the apparent three-dimensional features of the spin lattice and the lack of frustration, strong quantum fluctuations in the system are evidenced by a broad maximum in the magnetic susceptibility, a reduced value of the Neel temperature T_N ~ 15 K >> J_c, and a low value of the sublattice magnetization m = 0.55 Bohr magneton. All these features should be ascribed to the low coordination number of 3 that outbalances the three-dimensional nature of the spin lattice.Comment: Dedicated to Stefan-Ludwig Drechsler on the occasion of his 60th birthday (9 pages, 6 figures

    Magnetism of CuX2 frustrated chains (X = F, Cl, Br): the role of covalency

    Full text link
    Periodic and cluster density-functional theory (DFT) calculations, including DFT+U and hybrid functionals, are applied to study magnetostructural correlations in spin-1/2 frustrated chain compounds CuX2: CuCl2, CuBr2, and a fictitious chain structure of CuF2. The nearest-neighbor and second-neighbor exchange integrals, J1 and J2, are evaluated as a function of the Cu-X-Cu bridging angle, theta, in the physically relevant range 80-110deg. In the ionic CuF2, J1 is ferromagnetic for theta smaller 100deg. For larger angles, the antiferromagnetic superexchange contribution becomes dominant, in accord with the Goodenough-Kanamori-Anderson rules. However, both CuCl2 and CuBr2 feature ferromagnetic J1 in the whole angular range studied. This surprising behavior is ascribed to the increased covalency in the Cl and Br compounds, which amplifies the contribution from Hund's exchange on the ligand atoms and renders J1 ferromagnetic. At the same time, the larger spatial extent of X orbitals enhances the antiferromagnetic J2, which is realized via the long-range Cu-X-X-Cu paths. Both, periodic and cluster approaches supply a consistent description of the magnetic behavior which is in good agreement with the experimental data for CuCl2 and CuBr2. Thus, owing to their simplicity, cluster calculations have excellent potential to study magnetic correlations in more involved spin lattices and facilitate application of quantum-chemical methods

    Terrestrial planets across space and time

    Full text link
    The study of cosmology, galaxy formation and exoplanets has now advanced to a stage where a cosmic inventory of terrestrial planets may be attempted. By coupling semi-analytic models of galaxy formation to a recipe that relates the occurrence of planets to the mass and metallicity of their host stars, we trace the population of terrestrial planets around both solar-mass (FGK type) and lower-mass (M dwarf) stars throughout all of cosmic history. We find that the mean age of terrestrial planets in the local Universe is 7±17\pm{}1 Gyr for FGK hosts and 8±18\pm{}1 Gyr for M dwarfs. We estimate that hot Jupiters have depleted the population of terrestrial planets around FGK stars by no more than ≈10%\approx 10\%, and that only ≈10%\approx 10\% of the terrestrial planets at the current epoch are orbiting stars in a metallicity range for which such planets have yet to be confirmed. The typical terrestrial planet in the local Universe is located in a spheroid-dominated galaxy with a total stellar mass comparable to that of the Milky Way. When looking at the inventory of planets throughout the whole observable Universe, we argue for a total of ≈1×1019\approx 1\times 10^{19} and ≈5×1020\approx 5\times 10^{20} terrestrial planets around FGK and M stars, respectively. Due to light travel time effects, the terrestrial planets on our past light cone exhibit a mean age of just 1.7±0.21.7\pm 0.2 Gyr. These results are discussed in the context of cosmic habitability, the Copernican principle and searches for extraterrestrial intelligence at cosmological distances.Comment: 11 pages, 8 figures. v.2: Accepted for publication in ApJ. Some changes in quantitative results compared to v.1, mainly due to differences in IMF assumption

    Magnetic pyroxenes LiCrGe2O6 and LiCrSi2O6: dimensionality crossover in a non-frustrated S=3/2 Heisenberg model

    Full text link
    The magnetism of magnetoelectric SS = 3/2 pyroxenes LiCrSi2_2O6_6 and LiCrGe2_2O6_6 is studied by density functional theory (DFT) calculations, quantum Monte Carlo (QMC) simulations, neutron diffraction, as well as low-field and high-field magnetization measurements. In contrast with earlier reports, we find that the two compounds feature remarkably different, albeit non-frustrated magnetic models. In LiCrSi2_2O6_6, two relevant exchange integrals, J1≃J_1 \simeq 9 K along the structural chains and Jic1J_{\text{ic1}} ≃\simeq 2 K between the chains, form a 2D anisotropic honeycomb lattice. In contrast, the spin model of LiCrGe2_2O6_6 is constituted of three different exchange couplings. Surprisingly, the leading exchange Jic1J_{\text{ic1}} ≃\simeq 2.3 K operates between the chains, while J1J_1 ≃\simeq 1.2 K is about two times smaller. The additional interlayer coupling Jic2J_{\text{ic2}} ≃\simeq J1J_1 renders this model 3D. QMC simulations reveal excellent agreement between our magnetic models and the available experimental data. Underlying mechanisms of the exchange couplings, magnetostructural correlations, as well as implications for other pyroxene systems are discussed.Comment: 11 pages, 8 figures, 3 tables + Supplementary informatio

    AKLT Models with Quantum Spin Glass Ground States

    Full text link
    We study AKLT models on locally tree-like lattices of fixed connectivity and find that they exhibit a variety of ground states depending upon the spin, coordination and global (graph) topology. We find a) quantum paramagnetic or valence bond solid ground states, b) critical and ordered N\'eel states on bipartite infinite Cayley trees and c) critical and ordered quantum vector spin glass states on random graphs of fixed connectivity. We argue, in consonance with a previous analysis, that all phases are characterized by gaps to local excitations. The spin glass states we report arise from random long ranged loops which frustrate N\'eel ordering despite the lack of randomness in the coupling strengths.Comment: 10 pages, 1 figur

    The quantum origins of skyrmions and half-skyrmions in Cu2OSeO3

    Full text link
    The Skyrme-particle, the skyrmionskyrmion, was introduced over half a century ago and used to construct field theories for dense nuclear matter. But with skyrmions being mathematical objects - special types of topological solitons - they can emerge in much broader contexts. Recently skyrmions were observed in helimagnets, forming nanoscale spin-textures that hold promise as information carriers. Extending over length-scales much larger than the inter-atomic spacing, these skyrmions behave as large, classical objects, yet deep inside they are of quantum origin. Penetrating into their microscopic roots requires a multi-scale approach, spanning the full quantum to classical domain. By exploiting a natural separation of exchange energy scales, we achieve this for the first time in the skyrmionic Mott insulator Cu2_2OSeO3_3. Atomistic ab initio calculations reveal that its magnetic building blocks are strongly fluctuating Cu4_4 tetrahedra. These spawn a continuum theory with a skyrmionic texture that agrees well with reported experiments. It also brings to light a decay of skyrmions into half-skyrmions in a specific temperature and magnetic field range. The theoretical multiscale approach explains the strong renormalization of the local moments and predicts further fingerprints of the quantum origin of magnetic skyrmions that can be observed in Cu2_2OSeO3_3, like weakly dispersive high-energy excitations associated with the Cu4_4 tetrahedra, a weak antiferromagnetic modulation of the primary ferrimagnetic order, and a fractionalized skyrmion phase.Comment: 5 pages, 3 figure

    Area Distribution of Elastic Brownian Motion

    Full text link
    We calculate the excursion and meander area distributions of the elastic Brownian motion by using the self adjoint extension of the Hamiltonian of the free quantum particle on the half line. We also give some comments on the area of the Brownian motion bridge on the real line with the origin removed. We will stress on the power of self adjoint extension to investigate different possible boundary conditions for the stochastic processes.Comment: 18 pages, published versio

    Consequences of critical interchain couplings and anisotropy on a Haldane chain

    Get PDF
    Effects of interchain couplings and anisotropy on a Haldane chain have been investigated by single crystal inelastic neutron scattering and density functional theory (DFT) calculations on the model compound SrNi2_2V2_2O8_8. Significant effects on low energy excitation spectra are found where the Haldane gap (Δ0≈0.41J\Delta_0 \approx 0.41J; where JJ is the intrachain exchange interaction) is replaced by three energy minima at different antiferromagnetic zone centers due to the complex interchain couplings. Further, the triplet states are split into two branches by single-ion anisotropy. Quantitative information on the intrachain and interchain interactions as well as on the single-ion anisotropy are obtained from the analyses of the neutron scattering spectra by the random phase approximation (RPA) method. The presence of multiple competing interchain interactions is found from the analysis of the experimental spectra and is also confirmed by the DFT calculations. The interchain interactions are two orders of magnitude weaker than the nearest-neighbour intrachain interaction JJ = 8.7~meV. The DFT calculations reveal that the dominant intrachain nearest-neighbor interaction occurs via nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty dd orbital of V ions. The present single crystal study also allows us to correctly position SrNi2_2V2_2O8_8 in the theoretical DD-J⊥J_{\perp} phase diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015

    Cutting edges at random in large recursive trees

    Get PDF
    We comment on old and new results related to the destruction of a random recursive tree (RRT), in which its edges are cut one after the other in a uniform random order. In particular, we study the number of steps needed to isolate or disconnect certain distinguished vertices when the size of the tree tends to infinity. New probabilistic explanations are given in terms of the so-called cut-tree and the tree of component sizes, which both encode different aspects of the destruction process. Finally, we establish the connection to Bernoulli bond percolation on large RRT's and present recent results on the cluster sizes in the supercritical regime.Comment: 29 pages, 3 figure
    • …
    corecore