10 research outputs found

    Reading ADP-ribosylation signaling using chemical biology and interaction proteomics

    Get PDF
    ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.NWONWO-CW-TOP grant (TOP.017.010)Bio-organic Synthesi

    EZH1/2 function mostly within canonical PRC2 and exhibit proliferation-dependent redundancy that shapes mutational signatures in cancer

    Get PDF
    Contains fulltext : 202562.pdf (Publisher’s version ) (Open Access

    Bifunctional protein PCBD2 operates as a co-factor for hepatocyte nuclear factor 1β and modulates gene transcription.

    Get PDF
    Contains fulltext : 232382.pdf (Publisher’s version ) (Open Access)Hepatocyte nuclear factor 1β (HNF1β) is an essential transcription factor in development of the kidney, liver, and pancreas. HNF1β-mediated transcription of target genes is dependent on the cell type and the development stage. Nevertheless, the regulation of HNF1β function by enhancers and co-factors that allow this cell-specific transcription is largely unknown. To map the HNF1β interactome we performed mass spectrometry in a mouse kidney inner medullary collecting duct cell line. Pterin-4a-carbinolamine dehydratase 2 (PCBD2) was identified as a novel interaction partner of HNF1β. PCBD2 and its close homolog PCBD1 shuttle between the cytoplasm and nucleus to exert their enzymatic and transcriptional activities. Although both PCBD proteins share high sequence identity (48% and 88% in HNF1 recognition helix), their tissue expression patterns are unique. PCBD1 is most abundant in kidney and liver while PCBD2 is also abundant in lung, spleen, and adipose tissue. Using immunolocalization studies and biochemical analysis we show that in presence of HNF1β the nuclear localization of PCBD1 and PCBD2 increases significantly. Promoter luciferase assays demonstrate that co-factors PCBD1 and PCBD2 differentially regulate the ability of HNF1β to activate the promoters of transcriptional targets important in renal electrolyte homeostasis. Deleting the N-terminal sequence of PCBD2, not found in PCBD1, diminished the differential effects of the co-factors on HNF1β activity. All together these results indicate that PCBD1 and PCBD2 can exert different effects on HNF1β-mediated transcription. Future studies should confirm whether these unique co-factor activities also apply to HNF1β-target genes involved in additional processes besides ion transport in the kidney.01 april 202

    The interactome of a family of potential methyltransferases in HeLa cells.

    No full text
    Human methytransferase like proteins (METTL) are part of a large protein family characterized by the presence of binding domains for S-adenosyl methionine, a co-substrate for methylation reactions. Despite the fact that members of this protein family were shown or predicted to be DNA, RNA or protein methyltransferases, most METTL proteins are still poorly characterized. Identification of complexes in which these potential enzymes act could help to understand their function(s) and substrate specificities. Here we systematically studied interacting partners of METTL protein family members in HeLa cells using label-free quantitative mass spectrometry. We found that, surprisingly, many of the METTL proteins appear to function outside of stable complexes whereas others including METTL7B, METTL8 and METTL9 have high-confidence interaction partners. Our study is the first systematic and comprehensive overview of the interactome of METTL protein family that can provide a crucial resource for further studies of these potential novel methyltransferases

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Get PDF
    Contains fulltext : 208668.pdf (publisher's version ) (Open Access)Polycomb group (PcG) proteins are transcriptional repressors that are important regulators of cell fate during embryonic development. Among them, Ezh2 is responsible for catalyzing the epigenetic repressive mark H3K27me3 and is essential for animal development. The ability of zebrafish embryos lacking both maternal and zygotic ezh2 to form a normal body plan provides a unique model for comprehensively studying Ezh2 function during early development in vertebrates. By using a multi-omics approach, we found that Ezh2 is required for the deposition of H3K27me3 and is essential for proper recruitment of Polycomb group protein Rnf2. However, despite the complete absence of PcG-associated epigenetic mark and proteins, only minor changes in H3K4me3 deposition and gene and protein expression occur. These changes were mainly due to local dysregulation of transcription factors outside their normal expression boundaries. Altogether, our results in zebrafish show that Polycomb-mediated gene repression is important immediately after the body plan is formed to maintain spatially restricted expression profiles of transcription factors, and we highlight the differences that exist in the timing of PcG protein action between vertebrate species

    An interaction proteomics survey of transcription factor binding at recurrent TERT promoter mutations

    Get PDF
    Contains fulltext : 171249.pdf (publisher's version ) (Open Access

    The Tudor protein Veneno assembles the ping-pong amplification complex that produces viral piRNAs in Aedes mosquitoes

    Get PDF
    PIWI-interacting RNAs (piRNAs) comprise a class of small RNAs best known for suppressing transposable elements in germline tissues. The vector mosquito Aedes aegypti encodes seven PIWI genes, four of which are somatically expressed. This somatic piRNA pathway generates piRNAs from viral RNA during infection with cytoplasmic RNA viruses through ping-pong amplification by the PIWI proteins Ago3 and Piwi5. Yet, additional insights into the molecular mechanisms mediating non-canonical piRNA production are lacking. TUDOR-domain containing (Tudor) proteins facilitate piRNA biogenesis in Drosophila melanogaster and other model organisms. We thus hypothesized that Tudor proteins are required for viral piRNA production and performed a knockdown screen targeting all A. aegypti Tudor genes. Knockdown of the Tudor genes AAEL012437, Vreteno, Yb, SMN and AAEL008101-RB resulted in significantly reduced viral piRNA levels, with AAEL012437-depletion having the strongest effect. This protein, which we named Veneno, associates directly with Ago3 in an sDMA-dependent manner and localizes in cytoplasmic foci reminiscent of piRNA processing granules of Drosophila. Veneno-interactome analyses reveal a network of co-factors including the orthologs of the Drosophila piRNA pathway components Vasa and Yb, which in turn interacts with Piwi5. We propose that Veneno assembles a multi-protein complex for ping-pong dependent piRNA production from viral RNA

    Immuno-detection by sequencing enables large-scale high-dimensional phenotyping in cells

    Get PDF
    Contains fulltext : 193037.pdf (publisher's version ) (Open Access

    The rRNA m<sup>6</sup>A methyltransferase METTL5 is involved in pluripotency and developmental programs.

    No full text
    Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases
    corecore