12 research outputs found

    Direct bandgap quantum wells in hexagonal Silicon Germanium

    Get PDF
    Silicon is indisputably the most advanced material for scalable electronics, but it is a poor choice as a light source for photonic applications, due to its indirect band gap. The recently developed hexagonal Si1−xGex semiconductor features a direct bandgap at least for x &gt; 0.65, and the realization of quantum heterostructures would unlock new opportunities for advanced optoelectronic devices based on the SiGe system. Here, we demonstrate the synthesis and characterization of direct bandgap quantum wells realized in the hexagonal Si1−xGex system. Photoluminescence experiments on hex-Ge/Si0.2Ge0.8 quantum wells demonstrate quantum confinement in the hex-Ge segment with type-I band alignment, showing light emission up to room temperature. Moreover, the tuning range of the quantum well emission energy can be extended using hexagonal Si1−xGex/Si1−yGey quantum wells with additional Si in the well. These experimental findings are supported with ab initio bandstructure calculations. A direct bandgap with type-I band alignment is pivotal for the development of novel low-dimensional light emitting devices based on hexagonal Si1−xGex alloys, which have been out of reach for this material system until now.</p

    Optimizing Therapy to Prevent Avoidable Hospital Admissions in Multimorbid Older Adults (OPERAM): cluster randomised controlled trial.

    Get PDF
    OBJECTIVE To examine the effect of optimising drug treatment on drug related hospital admissions in older adults with multimorbidity and polypharmacy admitted to hospital. DESIGN Cluster randomised controlled trial. SETTING 110 clusters of inpatient wards within university based hospitals in four European countries (Switzerland, Netherlands, Belgium, and Republic of Ireland) defined by attending hospital doctors. PARTICIPANTS 2008 older adults (≥70 years) with multimorbidity (≥3 chronic conditions) and polypharmacy (≥5 drugs used long term). INTERVENTION Clinical staff clusters were randomised to usual care or a structured pharmacotherapy optimisation intervention performed at the individual level jointly by a doctor and a pharmacist, with the support of a clinical decision software system deploying the screening tool of older person's prescriptions and screening tool to alert to the right treatment (STOPP/START) criteria to identify potentially inappropriate prescribing. MAIN OUTCOME MEASURE Primary outcome was first drug related hospital admission within 12 months. RESULTS 2008 older adults (median nine drugs) were randomised and enrolled in 54 intervention clusters (963 participants) and 56 control clusters (1045 participants) receiving usual care. In the intervention arm, 86.1% of participants (n=789) had inappropriate prescribing, with a mean of 2.75 (SD 2.24) STOPP/START recommendations for each participant. 62.2% (n=491) had ≥1 recommendation successfully implemented at two months, predominantly discontinuation of potentially inappropriate drugs. In the intervention group, 211 participants (21.9%) experienced a first drug related hospital admission compared with 234 (22.4%) in the control group. In the intention-to-treat analysis censored for death as competing event (n=375, 18.7%), the hazard ratio for first drug related hospital admission was 0.95 (95% confidence interval 0.77 to 1.17). In the per protocol analysis, the hazard ratio for a drug related hospital admission was 0.91 (0.69 to 1.19). The hazard ratio for first fall was 0.96 (0.79 to 1.15; 237 v 263 first falls) and for death was 0.90 (0.71 to 1.13; 172 v 203 deaths). CONCLUSIONS Inappropriate prescribing was common in older adults with multimorbidity and polypharmacy admitted to hospital and was reduced through an intervention to optimise pharmacotherapy, but without effect on drug related hospital admissions. Additional efforts are needed to identify pharmacotherapy optimisation interventions that reduce inappropriate prescribing and improve patient outcomes. TRIAL REGISTRATION ClinicalTrials.gov NCT02986425

    Single quantum emitters with spin ground states based on Cl bound excitons in ZnSe

    No full text
    Defects in wide-band-gap semiconductors are promising qubit candidates for quantum communication and computation. Epitaxially grown II-VI semiconductors are particularly promising host materials due to their direct band gap and potential for isotopic purification to a spin-zero nuclear background. Here, we show an alternative type of single photon emitter with potential electron spin qubits based on Cl impurities in ZnSe. We utilize a quantum well to increase the binding energies of donor emission and confirm single photon emission with short radiative lifetimes of 192 ps. Furthermore, we verify that the ground state of the Cl donor complex contains a single electron by observing two-electron-satellite emission, leaving the electron in higher orbital states. We also characterize the Zeeman splitting of the exciton transition by performing polarization-resolved magnetic spectroscopy on single emitters. Our results suggest single Cl impurities are suitable as a single photon source with a potential photonic interface

    Correlations between cascaded photons from spatially localized biexcitons in ZnSe

    Full text link
    Radiative cascades emit correlated photon pairs, providing a pathway for the generation of entangled photons. The realization of a radiative cascade with impurity atoms in semiconductors, a leading platform for the generation of quantum light, would therefore provide a new avenue for the development of entangled photon pair sources. Here we demonstrate a radiative cascade from the decay of a biexciton at an impurity-atom complex in a ZnSe quantum well. The emitted photons show clear temporal correlations revealing the time--ordering of the cascade. Our result establishes impurity atoms in ZnSe as a potential platform for photonic quantum technologies using radiative cascades.Comment: 5 pages, 4 figure

    Phase-Pure Wurtzite GaAs Nanowires Grown by Self-Catalyzed Selective Area Molecular Beam Epitaxy for Advanced Laser Devices and Quantum Disks

    No full text
    The control of the crystal phase in self-catalyzed nanowires (NWs) is one of the central remaining open challenges in the research field of III/V semiconductor NWs. While several groups analyzed and revealed the growth dynamics, no experimental growth scheme has been verified yet, which reproducibly ensures the phase purity of binary self-catalyzed grown NWs. Here, we demonstrate the advanced control of self-catalyzed molecular beam epitaxy of GaAs NWs with up to a grade of 100% wurtzite (WZ) phase purity. The evolution of the most important properties during the growth, namely, the contact angle of the Ga droplet, the NW length, and the diameter is analyzed by scanning electron microscopy and transmission electron microscopy. Based on these results, we developed a comprehensive NW growth model for calculating the time-dependent evolution of the Ga droplet contact angle. Using this model, the Ga flux was dynamically modified during the growth to control and stabilize the contact angle in a certain range favoring the growth of phase-pure GaAs NWs. Although focusing on the self-catalyzed growth of WZ GaAs NWs, our model is also applicable to achieve phase-pure zinc blende (ZB) NWs and can be easily generalized to other III/V compounds. The self-catalyzed growth of such NWs may pave the way for substantial improvement of GaAs NW laser devices, the controlled growth of WZ/ZB quantum disks, and novel heterostructured core/multishell NW systems with a pristine crystalline order

    Efficient Single-Photon Sources Based on Chlorine-Doped ZnSe Nanopillars with Growth Controlled Emission Energy

    Get PDF
    Isolated impurity states in epitaxially grown semiconductor systems possess important radiative features such as distinct wavelength emission with a very short radiative lifetime and low inhomogeneous broadening, which make them promising for the generation of indistinguishable single photons. In this study, we investigate chlorine-doped ZnSe/ZnMgSe quantum well (QW) nanopillar (NP) structures as a highly efficient solid-state single-photon source operating at cryogenic temperatures. We show that single photons are generated due to the radiative recombination of excitons bound to neutral Cl atoms in ZnSe QW and the energy of the emitted photon can be tuned from about 2.85 down to 2.82 eV with ZnSe well width increase from 2.7 to 4.7 nm. Following the developed advanced technology, we fabricate NPs with a diameter of about 250 nm using a combination of dry and wet-chemical etching of epitaxially grown ZnSe/ZnMgSe QW structures. The remaining resist mask serves as a spherical- or cylindrical-shaped solid immersion lens on top of NPs and leads to the emission intensity enhancement by up to an order of magnitude in comparison to the pillars without any lenses. NPs with spherical-shaped lenses show the highest emission intensity values. The clear photon-antibunching effect is confirmed by the measured value of the second-order correlation function at a zero time delay of 0.14. The developed single-photon sources are suitable for integration into scalable photonic circuits

    Efficient Single-Photon Sources Based on Chlorine-Doped ZnSe Nanopillars with Growth Controlled Emission Energy

    No full text
    Isolated impurity states in epitaxially grown semiconductor systems possess important radiative features such as distinct wavelength emission with a very short radiative lifetime and low inhomogeneous broadening, which make them promising for the generation of indistinguishable single photons. In this study, we investigate chlorine-doped ZnSe/ZnMgSe quantum well (QW) nanopillar (NP) structures as a highly efficient solid-state single-photon source operating at cryogenic temperatures. We show that single photons are generated due to the radiative recombination of excitons bound to neutral Cl atoms in ZnSe QW and the energy of the emitted photon can be tuned from about 2.85 down to 2.82 eV with ZnSe well width increase from 2.7 to 4.7 nm. Following the developed advanced technology, we fabricate NPs with a diameter of about 250 nm using a combination of dry and wet-chemical etching of epitaxially grown ZnSe/ZnMgSe QW structures. The remaining resist mask serves as a spherical- or cylindrical-shaped solid immersion lens on top of NPs and leads to the emission intensity enhancement by up to an order of magnitude in comparison to the pillars without any lenses. NPs with spherical-shaped lenses show the highest emission intensity values. The clear photon-antibunching effect is confirmed by the measured value of the second-order correlation function at a zero time delay of 0.14. The developed single-photon sources are suitable for integration into scalable photonic circuits
    corecore