19,715 research outputs found
Island formation without attractive interactions
We show that adsorbates on surfaces can form islands even if there are no
attractive interactions. Instead strong repulsion between adsorbates at short
distances can lead to islands, because such islands increase the entropy of the
adsorbates that are not part of the islands. We suggest that this mechanism
cause the observed island formation in O/Pt(111), but it may be important for
many other systems as well.Comment: 11 pages, 4 figure
A note on the practical feasibility of domain-wall fermions
Domain-wall fermions preserve chiral symmetry up to terms that decrease
exponentially when the lattice size in the fifth dimension is taken to
infinity. The associated rates of convergence are given by the low-lying
eigenvalues of a simple local operator in four dimensions. These can be
computed using the Ritz functional technique and it turns out that the
convergence tends to be extremely slow in the range of lattice spacings
relevant to large-volume numerical simulations of lattice QCD. Two methods to
improve on this situation are discussed.Comment: 14 pages, talk given by P. H. at the workshop on {\em Current
theoretical problems in lattice field theory}, Ringberg, German
Optimal Sparsification for Some Binary CSPs Using Low-degree Polynomials
This paper analyzes to what extent it is possible to efficiently reduce the
number of clauses in NP-hard satisfiability problems, without changing the
answer. Upper and lower bounds are established using the concept of
kernelization. Existing results show that if NP is not contained in coNP/poly,
no efficient preprocessing algorithm can reduce n-variable instances of CNF-SAT
with d literals per clause, to equivalent instances with bits for
any e > 0. For the Not-All-Equal SAT problem, a compression to size
exists. We put these results in a common framework by analyzing
the compressibility of binary CSPs. We characterize constraint types based on
the minimum degree of multivariate polynomials whose roots correspond to the
satisfying assignments, obtaining (nearly) matching upper and lower bounds in
several settings. Our lower bounds show that not just the number of
constraints, but also the encoding size of individual constraints plays an
important role. For example, for Exact Satisfiability with unbounded clause
length it is possible to efficiently reduce the number of constraints to n+1,
yet no polynomial-time algorithm can reduce to an equivalent instance with
bits for any e > 0, unless NP is a subset of coNP/poly.Comment: Updated the cross-composition in lemma 18 (minor update), since the
previous version did NOT satisfy requirement 4 of lemma 18 (the proof of
Claim 20 was incorrect
FPT is Characterized by Useful Obstruction Sets
Many graph problems were first shown to be fixed-parameter tractable using
the results of Robertson and Seymour on graph minors. We show that the
combination of finite, computable, obstruction sets and efficient order tests
is not just one way of obtaining strongly uniform FPT algorithms, but that all
of FPT may be captured in this way. Our new characterization of FPT has a
strong connection to the theory of kernelization, as we prove that problems
with polynomial kernels can be characterized by obstruction sets whose elements
have polynomial size. Consequently we investigate the interplay between the
sizes of problem kernels and the sizes of the elements of such obstruction
sets, obtaining several examples of how results in one area yield new insights
in the other. We show how exponential-size minor-minimal obstructions for
pathwidth k form the crucial ingredient in a novel OR-cross-composition for
k-Pathwidth, complementing the trivial AND-composition that is known for this
problem. In the other direction, we show that OR-cross-compositions into a
parameterized problem can be used to rule out the existence of efficiently
generated quasi-orders on its instances that characterize the NO-instances by
polynomial-size obstructions.Comment: Extended abstract with appendix, as accepted to WG 201
Fine-Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP
The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian cycle C into a new Hamiltonian cycle C\u27 by replacing k edges. We analyze the problem of determining whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in time f(k) n^o(k / log k) for any function f, while (ii) it is possible to improve on the brute-force running time of O(n^k) and save linear factors in the exponent. Modern TSP heuristics are very successful at identifying the most promising edges to be used in k-opt moves, and experiments show that very good global solutions can already be reached using only the top-O(1) most promising edges incident to each vertex. This leads to the following question: can improving k-opt moves be found efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving k-move can be found in time O(n^((23/135+epsilon_k)k)), where lim_{k -> infty} epsilon_k = 0. This improves upon the best-known bounds for general graphs. Due to its practical importance, we devote special attention to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear time. For k <= 7, we give quasi-linear time algorithms for general weights. For k=8 we obtain a quasi-linear time algorithm when the weights are bounded by O(polylog n). On the other hand, based on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic weights on bounded-degree graphs
Cross-Composition: A New Technique for Kernelization Lower Bounds
We introduce a new technique for proving kernelization lower bounds, called
cross-composition. A classical problem L cross-composes into a parameterized
problem Q if an instance of Q with polynomially bounded parameter value can
express the logical OR of a sequence of instances of L. Building on work by
Bodlaender et al. (ICALP 2008) and using a result by Fortnow and Santhanam
(STOC 2008) we show that if an NP-complete problem cross-composes into a
parameterized problem Q then Q does not admit a polynomial kernel unless the
polynomial hierarchy collapses. Our technique generalizes and strengthens the
recent techniques of using OR-composition algorithms and of transferring the
lower bounds via polynomial parameter transformations. We show its
applicability by proving kernelization lower bounds for a number of important
graphs problems with structural (non-standard) parameterizations, e.g.,
Chromatic Number, Clique, and Weighted Feedback Vertex Set do not admit
polynomial kernels with respect to the vertex cover number of the input graphs
unless the polynomial hierarchy collapses, contrasting the fact that these
problems are trivially fixed-parameter tractable for this parameter. We have
similar lower bounds for Feedback Vertex Set.Comment: Updated information based on final version submitted to STACS 201
Kernelization Lower Bounds By Cross-Composition
We introduce the cross-composition framework for proving kernelization lower
bounds. A classical problem L AND/OR-cross-composes into a parameterized
problem Q if it is possible to efficiently construct an instance of Q with
polynomially bounded parameter value that expresses the logical AND or OR of a
sequence of instances of L. Building on work by Bodlaender et al. (ICALP 2008)
and using a result by Fortnow and Santhanam (STOC 2008) with a refinement by
Dell and van Melkebeek (STOC 2010), we show that if an NP-hard problem
OR-cross-composes into a parameterized problem Q then Q does not admit a
polynomial kernel unless NP \subseteq coNP/poly and the polynomial hierarchy
collapses. Similarly, an AND-cross-composition for Q rules out polynomial
kernels for Q under Bodlaender et al.'s AND-distillation conjecture.
Our technique generalizes and strengthens the recent techniques of using
composition algorithms and of transferring the lower bounds via polynomial
parameter transformations. We show its applicability by proving kernelization
lower bounds for a number of important graphs problems with structural
(non-standard) parameterizations, e.g., Clique, Chromatic Number, Weighted
Feedback Vertex Set, and Weighted Odd Cycle Transversal do not admit polynomial
kernels with respect to the vertex cover number of the input graphs unless the
polynomial hierarchy collapses, contrasting the fact that these problems are
trivially fixed-parameter tractable for this parameter.
After learning of our results, several teams of authors have successfully
applied the cross-composition framework to different parameterized problems.
For completeness, our presentation of the framework includes several extensions
based on this follow-up work. For example, we show how a relaxed version of
OR-cross-compositions may be used to give lower bounds on the degree of the
polynomial in the kernel size.Comment: A preliminary version appeared in the proceedings of the 28th
International Symposium on Theoretical Aspects of Computer Science (STACS
2011) under the title "Cross-Composition: A New Technique for Kernelization
Lower Bounds". Several results have been strengthened compared to the
preliminary version (http://arxiv.org/abs/1011.4224). 29 pages, 2 figure
- …