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Abstract
We introduce a new technique for proving kernelization lower bounds, called cross-composition.
A classical problem L cross-composes into a parameterized problem Q if an instance of Q with
polynomially bounded parameter value can express the logical OR of a sequence of instances of L.
Building on work by Bodlaender et al. (ICALP 2008) and using a result by Fortnow and San-
thanam (STOC 2008) we show that if an NP-hard problem cross-composes into a parameterized
problem Q then Q does not admit a polynomial kernel unless the polynomial hierarchy collapses.

Our technique generalizes and strengthens the recent techniques of using or-composition
algorithms and of transferring the lower bounds via polynomial parameter transformations. We
show its applicability by proving kernelization lower bounds for a number of important graphs
problems with structural (non-standard) parameterizations, e.g., Chromatic Number, Clique,
and Weighted Feedback Vertex Set do not admit polynomial kernels with respect to the
vertex cover number of the input graphs unless the polynomial hierarchy collapses, contrasting
the fact that these problems are trivially fixed-parameter tractable for this parameter. We have
similar lower bounds for Feedback Vertex Set.
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1 Introduction

Preprocessing and data reduction are important and widely applied concepts for speeding
up polynomial-time algorithms or for making computation feasible at all in the case of
hard problems that are not believed to have efficient algorithms. Kernelization is a way of
formalizing data reduction, which allows for a formal analysis of the (im)possibility of data
reduction and preprocessing. It originated as a technique to obtain fixed-parameter tractable
algorithms for hard (parameterized) problems, and has evolved into its own topic of research
(see [19, 2] for recent surveys). A parameterized problem [14, 16] is a language Q ⊆ Σ∗×N, the
second component is called the parameter. A kernelization algorithm (kernel) transforms an
instance (x, k) in polynomial time into an equivalent instance (x′, k′) such that |x′|, k′ ≤ f(k)
for some computable function f , which is the size of the kernel.

From a practical perspective we are particularly interested in cases where f ∈ kO(1),
so-called polynomial kernels. Success stories of kernelization include the O(k2) kernel for
k-Vertex Cover containing at most 2k vertices [11] and the meta-theorems for kernelization
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of problems on planar graphs [4], among many others (cf. also [22]). Although researchers
have looked for polynomial kernels for elusive problems such as k-Path for many years, it was
only recently that techniques were introduced which make it possible to prove (under some
complexity-theoretic assumption) that a parameterized problem in FPT does not admit a
polynomial kernel. Bodlaender et al. [3] introduced the concept of a or-composition algorithm
as a tool to give super-polynomial lower bounds on kernel sizes. Consider some set S, and
let or(S) denote the set such that for any sequence x∗ := (x1, . . . , xt) of instances of S we
have x∗ ∈ or(S)⇔

∨t
i=1 xi ∈ S; then we could say that the language or(S) expresses the

or of instances of S. The approach taken in the original paper by Bodlaender et al. [3] uses
a theorem by Fortnow and Santhanam [17] to show that if there is a polynomial-time or-
composition algorithm that maps any sequence of instances (x1, k), (x2, k), . . . , (xt, k) of some
parameterized problem Q which all share the same parameter value to an instance (x∗, k∗)
of Q which acts as the or of the inputs and k∗ ∈ kO(1), then Q does not admit a polynomial
kernel unless NP ⊆ coNP/poly. This machinery made it possible to prove e.g. that k-
Path and the Clique problem parameterized by the treewidth of the graph do not admit
polynomial kernels unless NP ⊆ coNP/poly1. The latter is deemed unlikely since it is known
to imply a collapse of the polynomial hierarchy to its third level [24] (and further [8]).

It did not take long before the techniques of Bodlaender et al. were combined with the
notion of a polynomial parameter transformation to also prove lower bounds for problems
for which no direct or-composition algorithm could be found. This idea was used implicitly
by Fernau et al. [15] to show that k-Leaf Out-Branching does not admit a polynomial
kernel, and was formalized in a paper by Bodlaender et al. [7]: they showed that if there is
a polynomial-time transformation from P to Q which incurs only a polynomial blow-up in
the parameter size, then if P does not admit a polynomial kernel then Q does not admit
one either. These polynomial parameter transformations were used extensively by Dom et
al. [13] who proved kernelization lower bounds for a multitude of important parameterized
problems such as Small Universe Hitting Set and Small Universe Set Cover. Dell
and van Melkebeek [12] were able to extend the techniques of Fortnow and Santhanam to
prove, e.g., that Vertex Cover does not admit a kernel of size O(k2−ε) for any ε > 0.

Our results. We introduce a new technique to prove kernelization lower-bounds, which
we call cross-composition. This technique generalizes and strengthens the earlier methods of
or-composition [3] and polynomial-parameter transformations [7], and puts the two existing
methods of showing kernelization lower bounds in a common perspective. Whereas the
existing notion of or-composition works by composing multiple instances of a parameterized
problem Q into a single instance of Q with a bounded parameter value, for our new technique
it is sufficient to compose the or of any classical NP-hard problem into an instance of the
parameterized problem Q for which we want to prove a lower-bound. The term cross in
the name stems from this fact: the source- and target problem of the composition need no
longer be the same. Since the input to a cross-composition algorithm is a list of classical
instances instead of parameterized instances, the inputs do not have a parameter in which
the output parameter of the composition must be bounded; instead we require that the size
of the output parameter is polynomially bounded in the size of the largest input instance. In
addition we show that the output parameter may depend polynomially on the logarithm of
the number of input instances, which often simplifies the constructions and proofs. We also
introduce the concept of a polynomial equivalence relation to remove the need for padding

1 In the remainder of this introduction we assume that NP 6⊆ coNP/poly when stating kernelization lower
bounds.
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Problem name Parameter Kernel size
Clique vertex cover not polynomial [Section 4.1]
Chromatic Number vertex cover not polynomial [Section 4.2]
Feedback Vertex Set dist. from cluster not polynomial [Section 4.3]
Feedback Vertex Set dist. from co-cluster not polynomial [Section 4.3]
Weighted FVS vertex cover not polynomial [Section 4.3]

Table 1 An overview of the kernelization lower bounds obtained in this paper; all listed
problems are fixed-parameter tractable with respect to this parameterization. Section 4 describes
the parameterized problems in more detail.

arguments which were frequently required for or-compositions.
To show the power of cross-composition we give kernelization lower bounds for structural

parameterizations of several important graph problems. Since many combinatorial problems
are easy on graphs of bounded treewidth [6], and since the treewidth of a graph is bounded by
the vertex cover number, it is often thought that almost all problems become tractable when
parameterized by the vertex cover number of the graph. We show that this is not the case
for kernelization: Clique, Chromatic Number and Weighted Feedback Vertex Set
do not admit polynomial kernels parameterized by the vertex cover number of the graph. In
the case of Clique it was already known [3] that the problem does not admit a polynomial
kernel parameterized by the treewidth of the graph; since the vertex cover number is at
least as large as the treewidth we prove a stronger result. For the unweighted Feedback
Vertex Set problem, which admits a polynomial kernel parameterized by the target size of
the feedback set [23], we show that there is no polynomial kernel for the parameterization by
deletion distance to cluster graphs or co-cluster graphs.

Organization. The paper is organized as follows. We first give some preliminary
definitions. Section 3 gives the formal definition of cross-composition, and proves that
cross-compositions allow us to give kernelization lower bounds. In Section 4 we apply the
new technique to obtain kernelization lower bounds for various problems.

2 Preliminaries

In this work we only consider undirected, finite, simple graphs. Let G be a graph and denote
its vertex set by V (G) and the edge set by E(G). We use χ(G) to denote the chromatic
number of G. If V ′ ⊆ V (G) then G[V ′] denotes the subgraph of G induced by V ′. A graph
is a cluster graph if every connected component is a clique. A graph is a co-cluster graph
if it is the edge-complement of a cluster graph. Throughout this work we use Σ to denote
a finite alphabet, but note that multiple occurrences of Σ may refer to different alphabets.
For positive integers n we define [n] := {1, . . . , n}. The satisfiability problem for boolean
formulae is referred to as sat. Several proofs have been deferred to the full version [5] of
this paper due to space restrictions. For completeness we give the following core definitions
of parameterized complexity [3, 14].

I Definition 1. A parameterized problem is a language Q ⊆ Σ∗ ×N, and is contained in the
class (strongly uniform) FPT (for Fixed-Parameter Tractable) if there is an algorithm that
decides whether (x, k) ∈ Q in f(k)|x|O(1) time for some computable function f .

I Definition 2. A kernelization algorithm [19, 2], or in short, a kernel for a parameterized
problem Q ⊆ Σ∗ × N is an algorithm that given (x, k) ∈ Σ∗ × N outputs in p(|x|+ k) time a
pair (x′, k′) ∈ Σ∗ × N such that:

STACS’11
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(x, k) ∈ Q⇔ (x′, k′) ∈ Q,
|x′|, k′ ≤ f(k),

where f is a computable function, and p a polynomial. Any function f as above is referred
to as the size of the kernel; if f is a polynomial then we have a polynomial kernel.

3 Cross-Composition

3.1 The Definition
In this section we define the concept of cross-composition and give all the terminology needed
to apply the technique.

I Definition 3 (Polynomial equivalence relation). An equivalence relation R on Σ∗ is called a
polynomial equivalence relation if the following two conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y belong to
the same equivalence class in (|x|+ |y|)O(1) time.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at
most (maxx∈S |x|)O(1) classes.

I Definition 4 (Cross-composition). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ × N be a parame-
terized problem. We say that L cross-composes into Q if there is a polynomial equivalence
relation R and an algorithm which, given t strings x1, x2, . . . , xt belonging to the same equiv-
alence class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi|

such that:

1. (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t,
2. k∗ is bounded by a polynomial in maxti=1 |xi|+ log t.

3.2 How Cross-compositions Yield Lower Bounds
The purpose of this section is to prove that cross-compositions yield kernelization lower
bounds. To give this proof we need some concepts from earlier work [3, 17, 12].

I Definition 5 ([17]). A weak distillation of sat into a set L ⊆ Σ∗ is an algorithm that:
receives as input a sequence (x1, . . . , xt) of instances of sat,
uses time polynomial in

∑t
i=1 |xi|,

and outputs a string y ∈ Σ∗ with
1. y ∈ L⇔ xi ∈ sat for some 1 ≤ i ≤ t,
2. |y| is bounded by a polynomial in maxti=1 |xi|.

I Theorem 6 (Theorem 1.2 [17]). If there is a weak distillation of sat into any set L ⊆ Σ∗
then NP ⊆ coNP/poly and the polynomial-time hierarchy collapses to the third level (PH =
Σp3).

I Definition 7 ([12]). The or of a language L ⊆ Σ∗ is the set or(L) that consists of all
tuples (x1, . . . , xt) for which there is an index 1 ≤ i ≤ t with xi ∈ L.

I Definition 8 ([3]). We associate an instance (x, k) of a parameterized problem with the
unparameterized instance formed by the string x#1k, where # denotes a new character that
we add to the alphabet and 1 is an arbitrary letter in Σ. The unparameterized version of a
parameterized problem Q is the language Q̃ = {x#1k | (x, k) ∈ Q}.
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I Theorem 9. Let L ⊆ Σ∗ be a set which is NP-hard under Karp reductions. If L cross-
composes into the parameterized problem Q and Q has a polynomial kernel then there is a
weak distillation of sat into or(Q̃) and NP ⊆ coNP/poly.

Proof. The proof is by construction and generalizes the concepts of Bodlaender et al. [3].
Assuming the conditions in the statement of the theorem hold, we show how to build an
algorithm which distills sat into or(Q̃). By the definition of cross-composition there is a
polynomial equivalence relation R and an algorithm C which composes L-instances belonging
to the same class of R into a Q-instance.

The input to the distillation algorithm consists of a sequence (x1, . . . , xt) of instances of
sat, which we may assume are elements of Σ∗. Definem := maxtj=1 |xj |. If t > (|Σ|+1)m then
there must be duplicate inputs, since the number of distinct inputs of length m′ ≤ m is |Σ|m′ .
By discarding duplicates we may therefore assume that t ≤ (|Σ|+ 1)m, i.e., log t ∈ O(m). By
the assumption that L is NP-hard under Karp reductions, there is a polynomial-time reduction
from sat to L. We use this reduction to transform each sat instance xi for 1 ≤ i ≤ t into an
equivalent L-instance yi. Since the transformation takes polynomial time, it cannot increase
the size of an instance by more than a polynomial factor and therefore |yi| is polynomial
in m for all i.

The algorithm now pairwise compares instances using the polynomial-time equivalence test
of R (whose existence is guaranteed by Definition 3) to partition the L-instances (y1, . . . , yt)
into partite sets Y1, . . . , Yr such that all instances from the same partite set are equivalent
under R. The properties of a polynomial equivalence relation guarantee that r is polynomial
in m and that this partitioning step takes polynomial time in the total input size.

We now use the cross-composition algorithm C on each of the partite sets Y1, . . . , Yr,
which is possible since all instances from the same set are equivalent under R. Let (zi, ki) be
the result of applying C to a sequence containing the contents of the set Yi, for 1 ≤ i ≤ r.
From the definition of cross-composition and using log t ∈ O(m) it follows that each ki is
polynomial in m, and that the computation of these parameterized instances takes polynomial
time in the total input size. From Definition 4 it follows that (zi, ki) is a yes instance of Q
if and only if one of the instances in Yi is a yes instance of L, which in turn happens if and
only if one of the inputs xi is a yes instance of sat.

Let K be a polynomial kernelization algorithm for Q, whose existence we assumed in
the statement of the theorem. We apply K to the instance (zi, ki) to obtain an equivalent
instance (z′i, k′i) of Q for each 1 ≤ i ≤ r. Since K is a polynomial kernelization we know
that these transformations can be carried out in polynomial time and that |z′i|, k′i ≤ k

O(1)
i .

Since ki is polynomial in m it follows that |z′i| and k′i are also polynomial in m for 1 ≤ i ≤ r.
As the next step we convert each parameterized instance (z′i, k′i) to the unparameterized

variant z̃i := z′i#1k′i . Since the values of the parameters are polynomial in m this trans-
formation takes polynomial time, and afterwards we find that |z̃i| is polynomial in m for
each 1 ≤ i ≤ r.

The last stage of the algorithm simply combines all unparameterized variants into one
tuple x∗ := (z̃1, z̃2, . . . , z̃r). Since the size of each component is polynomial in m, and
since the number of components r is polynomial in m, we have that |x∗| is polynomial
in m. The tuple x∗ forms an instance of or(Q̃), and by the definition of or(Q̃) we know
that x∗ ∈ or(Q̃) if and only if some element of the tuple is contained in Q̃. By tracing back
the series of equivalences we therefore find that x∗ ∈ or(Q̃) if and only if some input xi is a
yes-instance of sat. Since we can construct x∗ in polynomial time and |x∗| is polynomial
in m, we have constructed a weak distillation of sat into or(Q̃). By Theorem 6 this implies
NP ⊆ coNP/poly and proves the theorem. J

STACS’11
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I Corollary 10. If some set L is NP-hard under Karp reductions and L cross-composes into
the parameterized problem Q then there is no polynomial kernel for Q unless NP ⊆ coNP/poly.

A simple extension of Theorem 9 shows that cross-compositions also exclude the possibility
of compression into a small instance of a different parameterized problem, a notion sometimes
referred to as bikernelization [20, 21]. If an NP-hard set cross-composes into a parameterized
problem Q, then unless NP ⊆ coNP/poly there is no polynomial-time algorithm that maps
an instance (x, k) of Q to an equivalent instance (x′, k′) of any parameterized problem P

with |x′|, k′ ≤ kO(1).

4 Results Based on Cross-Composition

In this section we apply the cross-composition technique to give kernelization lower bounds.
We consider the problems Feedback Vertex Set, Chromatic Number and Clique
under various parameterizations. The first parameter we consider is the vertex cover number
of a graph G, i.e. the cardinality of a smallest set of vertices Z ⊆ V (G) such that all edges
of G have at least one endpoint in Z. We show that Clique, Chromatic Number and
Weighted Feedback Vertex Set do not admit polynomial kernels parameterized by the
size of a vertex cover unless NP ⊆ coNP/poly.

We could also define the vertex cover number as the minimum number of vertex deletions
needed to reduce a graph to an edgeless graph; hence the vertex cover number measures
how far a graph is from being edgeless. Following the initiative of Cai [9] we may similarly
define the deletion distance of a graph G to a (co-)cluster graph as the minimum number of
vertices that have to be deleted from G to turn it into a (co-)cluster graph. Since (co-)cluster
graphs have a very restricted structure, one would expect that a parameterization by (co-)
cluster deletion distance leads to fixed-parameter tractability; indeed this is the case for
many problems, since graphs of bounded (co-)cluster deletion distance also have bounded
cliquewidth [1]. For the Feedback Vertex Set problem, which admits a polynomial kernel
parameterized by the target size and hence by the vertex cover number, we show that the
parameterizations by cluster deletion or co-cluster deletion distance do not admit polynomial
kernels.

In Table 2 we give the known results for our subject problems with respect to the standard
parameterization, which refers to the solution size. Since the problems we study are very
well-known, we do not give a full definition for each one. Instead we give an educative
example of how the parameter is reflected in an instance.

Chromatic Number parameterized by the size of a vertex cover
Instance: A graph G, a vertex cover Z ⊆ V (G), and a positive integer `.
Parameter: The size k := |Z| of the vertex cover.
Question: Is χ(G) ≤ `, i.e., can G be colored with at most ` colors?

For technical reasons we supply a vertex cover in the input of the problem, to ensure that
well-formed instances can be recognized in polynomial time. The parameter to the problem
claims a bound on the vertex cover number of the graph, and using the set Z we may verify
this bound. For Feedback Vertex Set parameterized by deletion distance to cluster
graphs or co-cluster graphs, we also supply the deletion set in the input. These versions of
the problem are certainly no harder to kernelize than the versions where a deletion set or
vertex cover is not given.
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Problem name Parameter Param. complexity Kernel size
Clique clique W[1]-hard [14] W[1]-hard [14]
Feedback Vertex Set feedback vertex set FPT [10] 4k2 vertices [23]
Chromatic Number chromatic number NP-h for k ∈ O(1) NP-h for k ∈ O(1)
Table 2 Parameterized complexity and kernel size for some of the problems considered in this

paper, with respect to the standard parameterization (i.e., target size).

4.1 Clique parameterized by Vertex Cover
An instance of the NP-complete Clique problem [18, GT19] is a tuple (G, `) and asks
whether the graph G contains a clique on ` vertices. We use this problem for our first
kernelization lower bound.

I Theorem 11. Clique parameterized by the size of a vertex cover does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Proof. We prove the theorem by showing that Clique cross-composes into Clique parame-
terized by vertex cover; by Corollary 10 this is sufficient to establish the claim. We define
a polynomial equivalence relation R such that all bitstrings which do not encode a valid
instance of Clique are equivalent, and two well-formed instances (G1, `1) and (G2, `2) are
equivalent if and only if they satisfy |V (G1)| = |V (G2)| and `1 = `2. From this definition
it follows that any set of well-formed instances on at most n vertices each is partitioned
into O(n2) equivalence classes. Since all malformed instances are in one class, this proves
that R is indeed a polynomial equivalence relation.

We now give a cross-composition algorithm which composes t input instances x1, . . . , xt
which are equivalent under R into a single instance of Clique parameterized by vertex
cover. If the input instances are malformed or the size of the clique that is asked for
exceeds the number of vertices in the graph, then we may output a single constant-size no
instance; hence in the remainder we may assume that all inputs are well-formed and encode
structures (G1, `), . . . , (Gt, `) such that |V (Gi)| = n for all i ∈ [t] and all instances agree on
the value of `, which is at most n. We construct a single instance (G′, Z ′, `′, k′) of Clique
parameterized by vertex cover, which consists of a graph G′ with vertex cover Z ′ ⊆ V (G′) of
size k′ and an integer `′.

Let the vertices in each Gi be numbered arbitrarily from 1 to n. We construct the
graph G′ as follows (see also Figure 1):

1. Create `n vertices vi,j with i ∈ [`] and j ∈ [n]. Connect two vertices vi,j and vi′,j′ if i 6= i′

and j 6= j′. Let C denote the set of these vertices. It is crucial that any clique in G′ can
only contain one vertex vi,· or v·,j for each choice of i ∈ [`] respectively j ∈ [n]. Thus any
clique contains at most ` vertices from C.

2. For each pair 1 ≤ p < q ≤ n of distinct vertices from [n] (i.e., vertices of graphs Gi),
create three vertices: wp,q, wp,q̂, and wp̂,q and make them adjacent to C as follows:

a. wp,q is adjacent to all vertices from C,
b. wp,q̂ is adjacent to all vertices from C except for v·,j with j = q, and
c. wp̂,q is adjacent to all vertices from C except for v·,j with j = p.

Furthermore we add all edges between vertices w·,· that correspond to distinct pairs
from [n]. Let D denote these 3

(
n
2
)
vertices. Any clique can contain at most one w·,·

vertex for each pair from [n].

STACS’11
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(
n
2
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w·,· w·,̂· w·̂,·

Figure 1 A sketch of the construction used in the proof of Theorem 11. The dashed edges show in
an examplary way how vertices wp,q, wp,q̂, and wp̂,q are connected to vertices of B and C, e.g., {p, q}
is an edge of Gi but not of Gj .

3. For each instance xi with graph Gi make a new vertex ui and connect it to all vertices
in C. The adjacency to D is as follows:

a. Make ui adjacent to wp,q if {p, q} is an edge in Gi.
b. Otherwise make ui adjacent to wp,q̂ and wp̂,q.

Let B denote this set of t vertices.

We define `′ := ` + 1 +
(
n
2
)
. Furthermore, we let Z ′ := C ∪ D which is easily verified to

be a vertex cover for G′ of size k′ := |Z ′| = `n + 3
(
n
2
)
. The value k′ is the parameter to

the problem, which is polynomial in n and hence in the size of the largest input instance.
The cross-composition outputs the instance x′ := (G′, Z ′, `′, k′). It is easy to see that our
construction of G′ can performed in polynomial time. Let us now argue that x′ is yes if and
only if at least one of the instances xi is yes.

(⇐) First we will assume that some xi∗ is yes, i.e., that Gi∗ contains a clique on at
least ` vertices. Let S ⊆ [n] denote a clique of size exactly ` in Gi∗ . We will construct a
set S′ of size `′ = `+ 1 +

(
n
2
)
and show that it is a clique in G′:

1. We add the vertex ui∗ to S′.
2. Let S = {p1, . . . , p`} ⊆ [n]. For each pj in S we add the vertex vj,pj

to S′. By Step 1 all
these vertices are pairwise adjacent, and by Step 3 they are adjacent to ui∗ .

3. For each pair 1 ≤ p < q ≤ n there are two cases:

a. If {p, q} is an edge of Gi∗ then the vertex ui∗ is adjacent to wp,q in G′ (by Step 3)
and wp,q is adjacent to all vertices of C (by Step 2). We add wp,q to S′.

b. Otherwise the vertex ui∗ is adjacent to both wp,q̂ and wp̂,q. Since the clique S cannot
contain both p and q when {p, q} is a non-edge we are able to add wp,q̂ respectively wp̂,q
to S′; recall that, e.g., wp,q̂ is adjacent to all vertices of C except those corresponding
to q.

In both cases we add one w·,·-vertex to S′, each corresponding to a different pair p, q; all
these vertices are pairwise adjacent by Step 2.
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We have identified the clique S′ in G′ of size `′ = `+1+
(
n
2
)
, proving that x′ is a yes-instance.

(⇒) Now assume that x′ is a yes-instance and let S′ be a clique of size ` + 1 +
(
n
2
)

in G′. Since S′ contains at most ` vertices from C (i.e., one vi,· for each i ∈ [`]) and at
most

(
n
2
)
vertices from D it must contain at least one vertex from B, say ui∗ ∈ B. Since B

is an independent set the set S′ must contain exactly ` vertices from C and exactly
(
n
2
)

vertices from D. Let S = {j ∈ [n] | vi,j ∈ S′ for some i ∈ [`]}. The set S has size ` since S′
contains at most one vertex v·,j for each j ∈ [n]. We will now argue that S is a clique in Gi∗ .
Let p, q ∈ S. The clique S′ must contain a w·,·-vertex corresponding to {p, q} and it must
contain vertices vi,p and vi′,q for some i, i′ ∈ [`]. Therefore it must contain wp,q since wp,q̂
has no edges to vertices v·,q and wp̂,q has no edges to v·,p by Step 2. Thus ui∗ ∈ S′ must be
adjacent to wp,q which implies that Gi∗ contains the edge {p, q}. Thus S is a clique in Gi∗ .

Since we proved that the instance (G′, Z ′, `′, k′) can be constructed in polynomial-time
and that it acts as the or of the input instances, and because the parameter value k′
is bounded by a polynomial in the size of the largest input instance, this concludes the
cross-composition proof and establishes the claim. J

I Corollary 12. If F is a class of graphs containing all cliques, then Vertex Cover and
Independent Set parameterized by the minimum number of vertex deletions to obtain a
graph in F do not admit polynomial kernels unless NP ⊆ coNP/poly. In particular, Vertex
Cover and Independent Set parameterized by co-cluster deletion distance or cluster
deletion distance do not admit polynomial kernels unless NP ⊆ coNP/poly. J

4.2 Chromatic Number parameterized by Vertex Cover
In this section we give a kernelization lower bound for Chromatic Number parameterized
by vertex cover, through the use of a restricted version of 3-Coloring.

I Definition 13. A graph G is a triangle split graph if V (G) can be partitioned into sets X,Y
such that G[X] is an edgeless graph and G[Y ] is a disjoint union of vertex-disjoint triangles.

An instance of the classical problem 3-Coloring with Triangle Split Decomposi-
tion is a tuple (G,X, Y ) consisting of a graph G and a partition of its vertex set into X ∪ Y
such that G[X] is edgeless and G[Y ] is a union of vertex-disjoint triangles. The question is
whether G has a proper 3-coloring. It is not hard to show show that this restricted form
of the problem is NP-complete, by replacing all edges in a normal instance of 3-Coloring
with a triangle.

I Theorem 14. Chromatic Number parameterized by the size of a vertex cover does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. To prove the theorem we will show that 3-Coloring with Triangle Split De-
composition cross-composes into Chromatic Number parameterized by a vertex cover
of the graph. By a suitable choice of polynomial equivalence relation in the same style
as in Theorem 11 we may assume that we are given t input instances which encode struc-
tures (G1, X1, Y1), . . . , (Gt, Xt, Yt) of 3-Coloring with Triangle Split Decomposition
with |Xi| = n and |Yi| = 3m for all i ∈ [t] (i.e., m is the number of triangles in each instance).
We will compose these instances into one instance (G′, Z ′, `′, k′) of Chromatic Number
parameterized by vertex cover. By duplicating some instances we may assume that the
number of inputs t is a power of 2; this only increases the input size by a factor of at most 2,
and hence any bounds which are polynomial in the old input size will be polynomial in the
new input size which is sufficient for our purposes.
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For each set Yi, label the triangles in Gi[Yi] as T1, . . . , Tm in some arbitrary way, and label
the vertices in each triangle Tj for a set Yi as aji , b

j
i , c

j
i . We build a graph G′ with a vertex

cover of size k′ := 3 log t+ 4 + 3m ∈ O(m+ log t) such that G′ can be `′ := log t+ 4-colored
if and only if one of the input instances can be 3-colored.

1. Create a clique on vertices {pi | i ∈ [log t]} ∪ {w, x, y, z}; it is called the palette.
2. Add the vertices

⋃t
i=1 Xi to the graph, and make them adjacent to the vertex w.

3. For i ∈ [m] add a triangle T ∗i to the graph on vertices {ai, bi, ci}. The union of these
triangles will be the triangle vertices T ∗. Make all vertices in T ∗ adjacent to all vertices
from the set {pi | i ∈ [log t]} ∪ {w}.

4. For i ∈ [log t] add a path on two new vertices {qi0, qi1} to the graph, and make them
adjacent to all vertices ({pj | j ∈ [log t]} ∪ {x, y, z}) \ {pi}. These vertices form the
instance selector vertices.

5. For each instance number i ∈ [t] consider the binary representation of the value i,
which can be expressed in log t bits. Consider each position j ∈ [log t] of this binary
representation, where position 1 is most significant and log t is least significant. If bit
number j of the representation of i is a 0 (resp. a 1) then make vertex qj0 (resp. qj1)
adjacent to all vertices of Xi. (We identify t by the all-zero string 0 . . . 0.)

6. As the final step we re-encode the adjacencies between vertices in the independent sets Xi

and the triangles into our graph G′. For each i ∈ [t], for each vertex v ∈ Yi, do the
following. If v is adjacent in Gi to vertex aji then make vertex v adjacent in G′ to aj . Do
the same for adjacencies of v to bji and c

j
i .

This concludes the construction. The following claims about G′ are easy to verify:

(I) In every proper `′ = log t+ 4-coloring of G′, the following must hold:

a. each of the log t+ 4 vertices of the palette clique receives a unique color,
b. consider some i ∈ [log t]: the vertices qi0 and qi1 receive different colors (since they

are adjacent), one of them must take the color of w and the other of pi (they are
adjacent to all other vertices of the palette),

c. the triangle vertices T ∗ are colored using the colors of x, y, z (they are adjacent to
all other vertices of the palette),

d. the only colors which can occur on a vertex in Xi (for all i ∈ [t]) are the colors
given to x, y, z and {pj | j ∈ [log t]} (since the vertices in Xi are adjacent to w).

(II) For every i ∈ [t], the graph G′[Xi ∪ T ∗] is isomorphic to Gi.
(III) The set Z ′ := {pi | i ∈ [log t]} ∪ {w, x, y, z} ∪ T ∗ ∪ {qi0, qi1 | i ∈ [log t]} forms a vertex

cover of G′ of size k′ = |Z ′| = 3 log t+ 4 + 3m. Hence we establish that G′ has a vertex
cover of size O(m+ log t).

Using the given properties of G′ one may verify that χ(G′) ≤ log t+ 4⇔ ∃i ∈ [t] : χ(Gi) ≤ 3.
The remainder of the proof is deferred to the full version due to space restrictions. J

For every fixed integer q, the q-Coloring problem parameterized by the vertex cover
number does admit a polynomial kernel. This fact was independently observed by one of
the referees. Kernelization algorithms for structural parameterizations of the q-Coloring
problem will be the topic of a future publication.

4.3 Kernelization lower bounds for Feedback Vertex Set
In this section we give several kernelization lower bounds for Feedback Vertex Set. The
proofs can be found in the full version [5].
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I Theorem 15. Unless NP ⊆ coNP/poly, Feedback Vertex Set does not admit a
polynomial kernel when parameterized by 1) deletion distance to cluster graphs, and 2)
deletion distance to co-cluster graphs. J

I Theorem 16. Weighted Feedback Vertex Set, where each vertex is given a positive
integer as its weight, does not admit a polynomial kernel parameterized by the size of a vertex
cover unless NP ⊆ coNP/poly. J

5 Conclusions

We have introduced the technique of cross-composition and used it to derive kernelization
lower bounds for structural parameterizations of several graph problems. Since we expect
that cross-composition will be a fruitful tool in the further study of kernelization lower
bounds, we give some pointers on how to devise cross-composition constructions. As the
source problem of the composition one may choose a restricted yet NP-hard version of the
target problem; this brings down the richness of the instances that need to be composed. If
the goal is to give a lower bound for a structural parameterization (such as the size of a vertex
cover) then starting from a problem on graphs which decompose into an independent set and
some very structured remainder (e.g. triangle split graphs decompose into an independent
set and vertex-disjoint triangles) it may be possible to compose the instances by taking
the disjoint union of the inputs, and one-by-one identifying the vertices in the structured
remainder. The fact that cross-compositions allow the output parameter to be polynomial
in the size of the largest input can also be exploited, e.g., the proof of Theorem 11 uses
this when composing input instances on n vertices into a graph G′: we create nO(1) vertices
inside a vertex cover Z ′ for G′, and the adjacencies between Z ′ and a single vertex outside
the cover represent the entire adjacency structure of an input graph.

Cross-composition is also appealing from a methodological point of view, since it gives a
unified way of interpreting the two earlier techniques for proving kernelization lower bounds:
or-compositions and polynomial-parameter transformations can both be seen to yield cross-
compositions for a problem. For or-composition this is trivial to see since an or-composition
for problem Q just shows that the unparameterized variant Q̃ cross-composes into Q. The
combination of an or-composition for problem P and a polynomial-parameter transform
from P to Q also gives a cross-composition: first applying the or-composition on instances
of P and then transforming the resulting P -instance to a Q-instance effectively shows that
we can cross-compose instances of the unparameterized variant P̃ into instances of Q. Hence
the cross-composition technique puts the existing methods of showing super-polynomial
kernelization lower bounds in a common framework, and also explains why these problems
do not admit polynomial kernels: a parameterized problem P does not admit a polynomial
kernel if it can encode the or of some NP-hard problem for a sufficiently small parameter
value. This new perspective might lead to a deeper insight into the common structure of
FPT problems without polynomial kernels.
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