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Abstract
The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an
edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions
to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian
cycle C into a new Hamiltonian cycle C′ by replacing k edges. We analyze the problem of determining
whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown
that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether
or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in
time f(k)no(k/ log k) for any function f , while (ii) it is possible to improve on the brute-force running
time of O(nk) and save linear factors in the exponent. Modern TSP heuristics are very successful
at identifying the most promising edges to be used in k-opt moves, and experiments show that
very good global solutions can already be reached using only the top-O(1) most promising edges
incident to each vertex. This leads to the following question: can improving k-opt moves be found
efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new
algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also
holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving
k-move can be found in time O(n(23/135+εk)k), where limk→∞ εk = 0. This improves upon the
best-known bounds for general graphs. Due to its practical importance, we devote special attention
to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear
time. For k ≤ 7, we give quasi-linear time algorithms for general weights. For k = 8 we obtain a
quasi-linear time algorithm when the weights are bounded by O(polylogn). On the other hand, based
on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in
edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence
we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic
weights on bounded-degree graphs.
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1 Introduction

1.1 Motivation
The Traveling Salesman Problem (TSP) hardly needs an introduction; it is one of the
most important problems in combinatorial optimization, which asks to find a Hamiltonian
cycle of minimum weight in an edge-weighted complete graph. Local search is widely used
in practical TSP solvers [10, 11]. The most commonly used neighborhood is a k-move (or
k-opt move). A k-move on a Hamiltonian cycle C is a pair (E−, E+) of edge sets such that
E− ⊆ E(C), |E−| = |E+| = k and (C \ E−) ∪ E+ is also a Hamiltonian cycle. Marx [13]
showed that finding an improving k-move (i.e., a k-move that results in a lighter Hamiltonian
cycle) is W[1]-hard parameterized by k, and this result was refined by Guo et al. [6] to
obtain an f(k)nΩ(k/ log k) lower bound under the Exponential Time Hypothesis (ETH). For
small values of k, the current fastest running time is O(nk) for k = 2, 3 (by exhaustive
search), O(n3) for k = 4 [4], and O(n3.4) for k = 5 [3]. Moreover, de Berg et al. [4] and
Cygan et al. [3] showed that improving the running time to O(n3−ε) for k = 3 or k = 4 implies
a breakthrough result of an O(n3−δ)-time algorithm for All-Pairs Shortest Paths.

From the hardness shown by the theoretical studies, it seems that local search can be
applied only to small graphs. Nevertheless, state-of-the-art local search TSP solvers can deal
with large graphs with tens of thousands of vertices. This is mainly due to the following
two heuristics.
1. They sparsify the input graph by picking the top-d important incident edges for each

vertex according to an appropriate importance measure. For example, Lin-Kernighan [12]
picks the top-5 nearest neighbors, and its extension LKH [8] picks the top-5 α-nearest
neighbors, where the α-distance of an edge is the increase of the Held-Karp lower
bound [7] by including the edge. The empirical evaluation by Helsgaun [8] showed that
the sparsification by the α-nearest neighbors can preserve almost optimal solutions.

2. They mainly focus on sequential k-moves. In general, E− ∪E+ is a set of edge-disjoint
closed walks, each of which alternately uses edges in E− and E+. If it consists of a single
closed walk, the move is called sequential. Graphs of maximum degree d with n vertices
have at most n(2(d−2))k−1 sequential k-moves (n choices for the starting point, 2 choices
for the next edge in E−, and at most d − 2 choices for the next edge in E+), which
is linear in n when considering d and k as constants. On the other hand, linear-time
computation of non-sequential k-moves appears non-trivial. Lin-Kernighan does not
search for non-sequential moves at all, and after it finds a local optimum, it applies special
non-sequential 4-moves called double bridges to get out of the local optimum. LKH-2 [9]
improves Lin-Kernighan by heuristically searching for non-sequential moves during the
local search.
This state of affairs raises the following questions: what is the complexity of finding

improving k-moves in bounded-degree graphs? How does the complexity scale with k, and
can it be done efficiently for small values of k? Since improving sequential moves can be
found in linear time for fixed k and d, to answer these questions we have to investigate
non-sequential k-moves in bounded-degree graphs.
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1.2 Our contributions
We classify the complexity of finding improving k-moves in bounded-degree graphs in various
regimes. We present improved algorithms that exploit the degree restrictions using the
structure of k-moves, treewidth bounds, color-coding, and suitable data structures. We also
give new lower bounds based on the Exponential Time Hypothesis (ETH) and hypotheses
from fine-grained complexity concerning the complexity of detecting triangles. To state
our results in more detail, we first introduce the two problem variants we consider; a weak
variant to which our lower bounds already apply, and a harder variant which can be solved
by our algorithms.

k-opt Detection Parameter: k.
Input: An undirected graph G, a weight function w : E(G) → Z, an integer k, and a
Hamiltonian cycle C ⊆ E(G).
Question: Can C be changed into a Hamiltonian cycle of strictly smaller weight by a
k-move?
The related optimization problem k-opt Optimization is to compute, given a Hamilto-

nian cycle in the graph, a k-move that gives the largest cost improvement, or report that no
improving k-move exists. With this terminology, we describe our results.

We show that k-opt Detection is unlikely to be fixed-parameter tractable on bounded-
degree graphs: we give a new constant-degree lower-bound construction to show that there
is no function f for which k-opt Detection on subcubic graphs with weights {1, 2} can
be solved in time f(k) · no(k/ log k), unless ETH fails. Hence the running time lower bound
for general graphs by Guo et al. [6] continues to hold in this very restricted setting. While
the degree restriction does not make the problem fixed-parameter tractable, it is possible
to obtain faster algorithms. By adapting the approach of Cygan et al. [3], exploiting the
fact that the number of sequential moves is linear in n in bounded-degree graphs, and
proving a new upper bound on the pathwidth of an k-edge even graph, we show that k-
opt Optimization in n-vertex graphs of maximum degree O(1) can be solved in time
O(n(23/135+εk)k) = O(n(0.1704+εk)k), where limk→∞ εk = 0. This improves on the behavior
for general graphs, where the current-best running time [3] is O(n(1/4+εk)k).

Since quasi-linear running times are most useful for dealing with large inputs, we perform
a fine-grained analysis of the range of k for which improving k-moves can be found in
time O(npolylogn) on n-vertex graphs. Observe that in the bounded-degree setting, the
number of edges m is O(n). We prove lower bounds using the hypothesis that detecting
a triangle in an unweighted graph cannot be done in nearly-linear time in the number of
edges m, which was formulated in several ways by Abboud and Vassilevska Williams [1,
Conjectures 2–3]. By an efficient reduction from Triangle Detection, we show that an
algorithm with running time O(npolylogn) for 9-opt Detection in subcubic graphs with
weights {1, 2} implies that a triangle in anm-edge graph can be found in time O(mpolylogm),
contradicting popular conjectures. We complement these lower bounds by quasi-linear
algorithms for all k ≤ 8 to obtain a complete dichotomy for the case of integer weights
bounded by O(polylogn). When the weights are not bounded, we obtain quasi-linear time
algorithms for all k ≤ 7, leaving open only the case k = 8.

1.3 Organization
Preliminaries are presented in Section 2. In Section 3 we give faster XP algorithms for
varying k. By refining these ideas, we give quasi-linear-time algorithms for k ≤ 8 in Section 4.
Section 5 gives the reduction from Triangle Detection to establish a superlinear lower
bound on subcubic graphs for k = 9. In Section 6 we describe the lower bound for varying k.
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2 Preliminaries

Given a graph G edge-weighted by w : E(G) → Z, and a subset F ⊆ E(G) of its edges,
w(F ) :=

∑
e∈F w(e). A k-move on a Hamiltonian cycle C is pair (E−, E+) of edge sets such

that |E−| = |E+| = k and (C \ E−) ∪ E+ is also a Hamiltonian cycle. A k-move is called
improving if w((C \ E−) ∪ E+) < w(C), or equivalently and more simply w(E+) < w(E−).
A necessary condition for a pair (E−, E+) to be a k-move is that the multiset of endpoints
of E− is equal to the multiset of endpoints of E+. An exchange (E−, E+) that satisfies this
condition is called a k-swap. We say that a k-swap results in the graph (C \E−) ∪E+. Note
that a k-swap always results in a spanning disjoint union of cycles. A k-swap resulting in a
graph with a single connected component is therefore a k-move. An infeasible k-swap is a
k-swap which is not a k-move.

We say that a k-swap (E−, E+) induces the graph E− ∪ E+. As a slight abuse of
notation, a k-swap will sometimes directly refer to this graph. A k-swap (E−, E+) such
that all edges E− ∪E+ are visited by a single closed walk alternating between E− and E+

is called sequential. In particular, in a simple graph, every 2-swap is sequential. One can
notice that an infeasible (sequential) 2-swap results in a disjoint union of exactly two cycles.
A k-move can always be decomposed into sequential ki-swaps (with

∑
ki = k) but some

k-moves cannot be decomposed into sequential ki-moves. The quantity w(E−)− w(E+) is
called the gain of the swap (E−, E+). We distinguish neutral swaps, with gain 0, improving
swaps, with strictly positive gain, and worsening swaps, with strictly negative gain.

For an integer n, we denote [n] = {1, . . . , n}. A k-embedding (or shortly: embedding) is
an increasing function f : [k]→ [n]. A connection k-pattern (or shortly: connection pattern)
is a perfect matching in the complete graph on the vertex set [2k]. A pair (f,M) where f is
a k-embedding and M is a connection k-pattern, is an alternative description of a k-swap.
Indeed, let e1, . . . , en be subsequent edges of C. Then, E− = {ef(i) : i ∈ [k]}. Vertices of the
connection pattern correspond to endpoints of E−, i.e., vertices 2i− 1, 2i ∈ [2k] correspond
to the left and right (in the clockwise order) endpoint of ef(i), respectively. Thus, edges of
the connection pattern correspond to a set E+ of |M | edges in G. We say that a k-swap
(E−, E+) fits into M if there is an embedding f such that (f,M) describes (E−, E+). Note
that every pair of an embedding and a connection pattern (f,M) describes exactly one
swap (E−, E+). Conversely, for a swap (E−, E+) the corresponding embedding f is also
unique (and determined by E−). However, in case E− contains incident edges, the swap
fits into more than one matching M (see Fig. 1). See [3] for a more formal description
of the equivalence.

The notion of a connection pattern can be extended to represent k′-swaps, for k′ < k, as
follows. Note that a matching N in the complete graph on the vertex set [2k] corresponds to
an |N |-swap if and only if there is a set ι(N) ⊆ [k] such that V (N) = {2i− 1, 2i : i ∈ ι(N)}.
For a set X ⊆ [k], by M [X] we denote the swap N such that ι(N) = X. We say that a
connection pattern M decomposes into swaps N1, . . . , Nt when M =

⊎t
i=1Ni and each Ni is

a connection pattern of a swap. The notion of fitting extends to k′-swaps in the natural way.
Consider a connection pattern N of a swap, for V (N) ⊆ [2k]. We call N sequential if

N ∪ {{2i− 1, 2i} : i ∈ ι(N)} forms a simple cycle. In particular, every connection pattern
can be decomposed into sequential connection patterns of (possibly shorter) swaps. The
correspondence between sequential swaps and sequential connection patterns is somewhat
delicate, so let us explain it in detail.

Let N be a sequential connection pattern, V (N) ⊆ [2k]. Recall that for every embedding
f there is exactly one |N |-swap (E−, E+) that fits into N . Clearly, this swap is sequential,
since every edge in {{2i− 1, 2i} : i ∈ ι(N)} corresponds to an edge of E− and every edge in
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Figure 1 A sequential swap (left) which fits two connection patterns (center, right). The pattern
in the center is not sequential, while the pattern on the right is sequential. On the left the solid
red edges are in E−, the dashed green edges are in E+, and the thin black edges are the remaining
edges of the Hamiltonian cycle C. In the central and right pictures, the dashed green edges form
some connection patterns.

N corresponds to an edge in E+. Thus the resulting set of edges E− ∪ E+ forms a single
closed walk. In particular, if the image of f contains two neighboring indices i, i+ 1 ∈ [n],
the closed walk is not a simple cycle.

Conversely, it is possible that a sequential swap fits into a connection pattern which is
not sequential, see Fig. 1 for an example. However, every sequential `-swap (E−, E+) fits at
least one sequential connection pattern. This sequential connection pattern is determined by
the closed walk which certifies the sequentiality of the swap. Indeed, let E− = {ei1 , . . . , ei`},
where i1, . . . , i` is an increasing sequence. Let v0, . . . , v2`−1 be the closed walk alternating
between E− and E+, in particular assume that E− = {vivi+1 : i is even}. Consider any
i = 0, . . . , ` − 1 and the corresponding edge eij = v2iv2i+1 in E−, for some j ∈ [`]. If v2i
is the left endpoint of eij , we put w2i = 2j − 1 and w2i+1 = 2j, otherwise w2i = 2j and
w2i+1 = 2j − 1. Then w0, . . . , w2`−1 is a simple cycle and N = {wiwi+1 : i is odd} is a
sequential connection pattern. By construction, (E−, E+) fits N , as required. Keeping in
mind the nuances in the notions of sequential swaps and corresponding sequential connection
patterns, for simplicity, we will often just say “a sequential swap M” for a matching M ,
instead of the more formal “a sequential connection pattern M of a swap”.

Fix a connection pattern M and let f : S → [n] be a partial embedding, for some S ⊆ [k].
For every j ∈ S, let v2j−1 and v2j be the left and right endpoint of ef(j), respectively.
We define

E−f = {ef(i) | i ∈ S},

E+
f = {{vi′ , vj′} | i, j ∈ S, i′ ∈ {2i− 1, 2i}, j′ ∈ {2j − 1, 2j}, {i′, j′} ∈M}.

Then, gainM (f) = w(E−f )− w(E+
f ).

3 Fast XP algorithms

For all fixed integers k and d, the number of sequential k-swaps in a graph of maximum
degree d is O(n), and we can enumerate all of them in the same running time. Therefore, we
can find the best improving k-move that can be decomposed into at most c sequential k-swaps
in O(nc) time. Because c is at most bk2 c, we obtain an O(nb k

2 c)-time algorithm for k-opt
Optimization. In what follows, we will improve this naive algorithm. Below we present a
relatively simple algorithm which exploits the range tree data structure [15] and achieves
running time roughly the same as the more sophisticated algorithm of Cygan et al. [3] for
general graphs.

ESA 2019
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I Theorem 1. For all fixed integers k, c, and d, there is an O(nd c
2 e polylogn)-time algorithm

to compute the best improving k-move that can be decomposed into c sequential swaps in
graphs of maximum degree d.

Proof. When c = 1, we can use the naive algorithm. Suppose c ≥ 2 and let h := d c2e.
For each possible connection pattern M consisting of c sequential swaps, we find the

best embedding as follows. Let M =
⋃c
i=1Ni, where each Ni corresponds to a sequential

swap. We split M into two parts ML =
⋃h
i=1Ni and MR =

⋃c
i=h+1Ni and we define

L =
⋃h
i=1 ι(Ni) and R =

⋃c
i=h+1 ι(Ni). Note that L ] R = [k]. Let fL : L → [n] and

fR : R→ [n] be embeddings of L and R, respectively. The union of these two embeddings
results in an embedding of [k] if and only if the following conditions hold.

For each i ∈ [k − 1] with i ∈ L and i+ 1 ∈ R, fL(i) < fR(i+ 1) holds.
For each i ∈ [k − 1] with i ∈ R and i+ 1 ∈ L, fR(i) < fL(i+ 1) holds.

We can efficiently compute a pair of embeddings satisfying these conditions using an orthog-
onal range maximum data structure as follows. Let {l1, . . . , lp} = {i : li ∈ L and li + 1 ∈ R}
and let {r1, . . . , rq} = {i : ri − 1 ∈ R and ri ∈ L}. We first enumerate all the |L|-swaps that
fit into ML and all the |R|-swaps that fit into MR, in O(nh) time. For each such |L|-swap
(fL,ML), we create a (p+ q)-dimensional point (fL(l1), . . . , fL(lp), fL(r1), . . . , fL(rq)) with
a priority gainML

(fL), and we collect these points into a data structure. It stores O(nh)
points. For each |R|-swap (fR,MR), we query for the embedding fL of maximum priority
satisfying fL(li) < fR(li + 1) for every i ∈ [p] and fR(ri − 1) < fL(ri) for every i ∈ [q], and
we answer the pair maximizing the total gain, i.e., the sum gainML

(fL) + gainMR
(fR). Using

the range tree data structure [15], each query takes O(logp+q nh) = O(polylogn) time, so
the total running time is O(nh polylogn). J

Since c ≤ bk2 c we get the following corollary.

I Corollary 2. For all fixed integers k and d, k-opt Optimization in graphs of maximum
degree d can be solved in time O(nd k−1

4 e polylogn).

Let us take another look at the proof of Theorem 1. Recall that for merging embeddings
fL and fR, we were interested only in values fL(i) for i ∈ L such that i+ 1 ∈ R or i− 1 ∈ R.
The embeddings of the remaining elements of L were forgotten at that stage, but we knew
that it is possible to embed them and we stored the gain of embedding them. This suggests
the following, different approach. We decompose the connection pattern into sequential
swaps and we scan the swaps in a carefully chosen order. Assume we scanned t swaps already
and there are c− t swaps ahead. Assume that only p� t of the t “boundary” swaps interact
with the remaining c− t swaps, where two swaps N1 and N2 interact when there is i ∈ ι(N1)
such that i− 1 ∈ ι(N2) or i+ 1 ∈ ι(N2). Then it suffices to compute, for every embedding
fL of the p swaps, the gain of the best (i.e., giving the highest gain) embedding gL of the t
swaps, such that fL matches gL on the boundary swaps. This amounts to O(np) values to
compute, since each sequential swap can be embedded in O(n) ways, if k and the maximum
degree are O(1). The idea is to (1) compute these values quickly (in time linear in their
number) using analogous values computed for the prefix of t − 1 swaps, (2) find an order
of swaps so that p is always small, namely p ≤ (23/135 + εk)k. The readers familiar with
the notion of pathwidth recognize that p here is just the pathwidth of the graph obtained
from the path 1, 2, . . . , k by identifying vertices in the set ι(N) for every sequential swap N
in M , and that (2) is just dynamic programming over the path decomposition. The resulting
algorithm is summarized in Theorem 3, and due to space limits, its formal proof is deferred
to the full version.
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I Theorem 3. For all fixed integers k and d, k-opt Optimization in graphs of maximum
degree d can be solved in time O(n(23/135+εk)k) = O(n(0.1704+εk)k), where limk→∞ εk = 0.

4 Fast algorithms for small k

Note that the algorithm for k-opt Optimization from Corollary 2 is quasi-linear for k ≤ 5.
In this section we extend the quasi-linear-time solvability to k ≤ 7 for k-opt Detection.
Under an additional assumption of bounded weights, we are able to reach quasi-linear time
for k = 8 as well, but the details of this part are deferred to the full version because of space
constraints. To be precise, in the k = 7 case we prove the following stronger statement than
just finding an arbitrary improving k-move.

I Theorem 4. For k ≤ 7, there is a quasi-linear-time algorithm to compute the best improving
k-move in bounded-degree graphs under the assumption that there are no improving k′-moves
for k′ < k.

We say that a connection pattern M of k-swaps is reducible if it can be decomposed into
two moves. Note that if M is improving, then at least one of the two moves is improving,
contradicting the assumption of Theorem 4.

I Observation 5. If there are no improving k′-moves for k′ < k, then no improving k-swap
fits into a reducible connection pattern.

Before we formulate our algorithm, we need two lemmas. We can prove these lemmas
by case analysis, and because of the space constraints, their proofs are deferred to the full
version. Let M [X] and M [Y ] be two swaps in a connection pattern M , for some disjoint
X,Y ⊆ [k]. Interaction between M [X] and M [Y ] is any i ∈ [k − 1] such that i ∈ X and
i+ 1 ∈ Y or i ∈ Y and i+ 1 ∈ X.

I Lemma 6. For any k ≥ 6, there is no feasible and irreducible connection k-pattern that
contains two 2-swaps that interact at least twice.

Let M be a connection pattern, i.e., a perfect matching on vertices [2k]. We say that M ′
is obtained from M by swapping i and i+ 1, for i ∈ [k], when M ′ is obtained from M by
swapping the mates of 2i− 1 and 2i+ 1 and swapping the mates of 2i and 2i+ 2.

I Lemma 7. LetM be a feasible irreducible connection k-pattern. Assume thatM decomposes
into three sequential swaps M [X], M [Y ], and M [Z], such that |X| = |Y | = 2. If there is
exactly one index i ∈ [k− 1] with i ∈ X and i+ 1 ∈ Y or i ∈ Y and i+ 1 ∈ X, the connection
pattern M ′ obtained from M by swapping i and i+ 1 is either feasible or reducible.

Now we are ready to describe the algorithm from Theorem 4 (see also Pseudocode 1).
For each feasible and irreducible connection k-pattern M , we compute the best embedding
as follows. If M consists of at most two sequential swaps, we can use the algorithm in
Theorem 1. Otherwise, M consists of three sequential swaps M [X], M [Y ], M [Z] such that
X ] Y ] Z = [k], |X| = |Y | = 2 and |Z| = k − 4. For each embedding fX : X → [n] of
X = {i, j} we create a 2-dimensional point (fX(i), fX(j)) with priority gainX(fX) and we
put all the points in a range tree data structure DX [15]. We build an analogous data
structure for Y . Next, for each embedding fZ for Z, we compute the best pair of embeddings
(fX , fY ) for X and Y as follows.

If there are no interactions between X and Y , we can find the best pair in O(polylogn)
time by independently picking the best embeddings for X and Y by querying the range trees
DX andDY . Indeed, first note that there is no index i ∈ [k−1] such thatX = {i, i+1} because

ESA 2019
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Algorithm 1 Quasi-linear-time algorithm for k ≤ 7.

1: for each feasible irreducible connection k-pattern M do
2: if M consists of at most two sequential swaps then
3: Apply the algorithm in Theorem 1.
4: else
5: Let M = M [X] ]M [Y ] ]M [Z] where |X| = |Y | = 2 and |Z| = k − 4.
6: if there are no interactions between X and Y then
7: for each embedding fZ for Z do
8: Independently compute the best embeddings fX for X and fY for Y .
9: else
10: Relax the constraint fX(i) < fY (i+ 1) to fX(i) 6= fY (i+ 1).
11: for each embedding fZ for Z do
12: Compute the best pair (fX , fY ) satisfying the relaxed constraints.

in such a case, both the 2-swap and the remaining (k− 2)-swap have to be feasible (similarly
for Y ). Since there are no interactions between X and Y , we must have i− 1 ∈ Z ∪ {0} and
i+1 ∈ Z∪{k+1} for every i ∈ X∪Y . To find the best embedding fX of X = {i, j}, we query
DX with the constraints fZ(i− 1) < fX(i) < fZ(i+ 1) and fZ(j − 1) < fX(j) < fZ(j + 1),
where we define fZ(0) := 0 and fZ(k + 1) := n+ 1. We proceed analogously for Y .

Finally, assume there are interactions between X and Y , so from Lemma 6, there is exactly
one interaction. W.l.o.g. i ∈ X and i+1 ∈ Y . Note that i−1 ∈ Z∪{0} and i+2 ∈ Z∪{k+1}.
We first relax the constraint fZ(i − 1) < fX(i) < fY (i + 1) < fZ(i + 2), where we define
fZ(0) := 0 and fZ(k + 1) := n + 1, to three constraints fZ(i − 1) < fX(i) < fZ(i + 2),
fZ(i − 1) < fY (i + 1) < fZ(i + 2), and fX(i) 6= fY (i + 1). We then drop the disturbing
inequality constraint fX(i) 6= fY (i+ 1) by color-coding1. We color each vertex in [n] in red
or blue, and we independently pick the best embedding for X (resp. Y ) that uses only red
(resp. blue) vertices. By using a family of perfect hash functions [5], we can construct a set
of O(log2 n) colorings such that, for every pair of embeddings fX and fY , there is at least
one coloring that colors all the vertices in fX red and all the vertices in fY blue.

We now obtain the best pair of embeddings (fX , fY ) satisfying the relaxed constraints.
If the obtained k-swap is not improving, we immediately know that there are no improving
k-moves that fit into M . If it is improving and satisfies the original constraint, we are
done. Finally, if it is improving but does not satisfy the original constraint, it fits into the
connection pattern M ′ that is obtained from M by swapping i and i+ 1. By Lemma 7, M ′
is either feasible or reducible. Because no improving k-swaps fit into reducible connection
patterns, M ′ has to be feasible. We therefore obtain a k-move that is as good as the best
k-move that fits into M . This completes the proof of Theorem 4.

We finally consider the case of k = 8. Note that, because Lemma 6 and 7 do not
assume k ≤ 7, the above algorithm can also compute the best improving k-move that can be
decomposed into three sequential swaps of size (2, 2, k − 4) for any fixed k under the same
assumption. Moreover, any connection patterns of 8-moves consisting of four 2-swaps are
reducible because it always induces a pair of two 2-swaps that interact at least twice. The

1 Instead of color-coding, we can adapt the range tree to support orthogonal range maximum queries
with an additional constraint of the form x 6= i by keeping one additional point in each node. With this
approach, we can avoid the additional log2 n factor. Because this paper does not focus on optimizing
the polylogn factor, we do not touch on the details.
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A

B

C

1 2

3 4

5 6

Figure 2 An instance of Triangle Detection.

remaining case for k = 8 is only when the 8-move can be decomposed into three sequential
swaps of size (2, 3, 3). In order to tackle this case, we exploit the bounded-weight assumption
as follows. For each connection pattern M = M [X] ]M [Y ] ]M [Z] with |X| = 2 and
|Y | = |Z| = 3, and for each embedding fZ for Z, we want to compute the best pair of
embeddings fX for X and fY for Y . When all the weights are integers from [W ], the gain
of (fX ,M [X]) is an integer from [−2W, 2W ], and the gain (fY ,M [Y ]) is an integer from
[−3W, 3W ]. We therefore have only O(W 2) pairs of gains. By guessing the pair of gains, the
query of finding the best pair can be reduced to the query of finding an arbitrary pair, and
the latter query can be efficiently answered by adapting the range tree. This leads to the
following algorithm, whose detailed description is deferred to the full version.

I Theorem 8. When all the weights are integers from [W ], there is an O(W 2n polylogn)-
time algorithm to compute the best improving 8-move under the assumption that there are no
improving k′-moves for k′ < 8.

5 Lower bound for k = 9

The starting point for our reduction is the following problem (see Fig. 2 for an exemplary
instance).

Triangle Detection Parameter: m := |E(H)|.
Input: An undirected graph H whose vertex set V (H) is partitioned into A ∪B ∪ C.
Question: Is there a triple (a, b, c) ∈ A×B × C such that {ab, ac, bc} ⊆ E(H)?

We assume without loss of generality that A, B, and C are three independent sets, so that
finding such a triple is equivalent to finding a triangle in the graph H. By simple reductions
that incur only a constant blow-up in the number of vertices and edges, this problem is
equivalent to determining whether a graph has a triangle or not.

I Assumption 1 (Triangle hypothesis [1]). There is a fixed δ > 0 such that, in the Word RAM
model with words of O(logn) bits, any algorithm requires m1+δ−o(1) time in expectation to
detect whether an m-edge graph contains a triangle.

It should be noted that one can solve Triangle Detection in time O(nω) where n is
the number of vertices and ω ≤ 2.373 is the best-known exponent for matrix multiplication.
Alon et al. [2] found an elegant win-win argument to solve Triangle Detection in time
O(m

2ω
ω+1 ): the 3-vertex paths in which the middle vertex has degree less than m

ω−1
ω+1 can be

listed in time O(m ·m
ω−1
ω+1 ) = O(m

2ω
ω+1 ), and for each, one can check if they form a triangle,

whereas the number of vertices of degree greater than m
ω−1
ω+1 is at most m

2
ω+1 , so one can

detect a triangle in time O(m
2ω

ω+1 ) in the subgraph that they induce. After more than two
decades, this is still the best worst-case running time (when nω = Ω(m

2ω
ω+1 )). This suggests
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that the triangle hypothesis is likely to hold. Moreover, if one thinks that the above scheme
yields the best possible running time and that ω will eventually reach 2, then exponent 4/3
could be the right answer for Triangle Detection parameterized by the number of edges.
The following is implied by [1, Conjecture 2] (since ω ≥ 2), in the regime m = Θ(n3/2) (so
that O(n2) and O(m4/3) coincide).

I Assumption 2. In the Word RAM model with words of O(logn) bits, any algorithm requires
m4/3−o(1) time in expectation to detect whether an m-edge Θ(m2/3)-node graph contains
a triangle.

We show that Subcubic 9-opt Detection parameterized by the number of vertices is as
hard as Triangle Detection parameterized by the number of edges, by providing a linear-
time reduction from the latter to the former. In light of Theorem 4, this implies that Bounded-
Degree 8-opt Detection is the only remaining open case where a quasi-linear algorithm
is not known but also not ruled out by a standard fine-grained complexity assumption.

I Lemma 9. There is an O(m)-time reduction from Triangle Detection onm-edge graphs
to Subcubic 9-opt Detection on O(m)-vertex undirected graphs with edge weights in {1, 2}.

Proof. From a tripartitioned instance of Triangle Detection H = (A ∪ B ∪ C,E(H))
with m edges, we build a subcubic graph G with Θ(m) vertices, an edge-weight function
w : E(G)→ {1, 2}, and a Hamiltonian cycle C. From C, there is a swap of up to 9 edges (i.e.,
up to 9 deletions and the same number of additions) which results in a lighter Hamiltonian
cycle if and only if H has a triangle.

Overall construction of G. We will build G by adding chords to the cycle C. Henceforth,
a chord is an edge of G which is not in C. It is helpful to think of C as a (subdivided)
triangle whose three sides correspond to A, B, and C, which we call the A-side (left), B-side
(right), and C-side (bottom), respectively. We will only name the edges of G (and not the
vertices), since the problem is more efficiently described in terms of edges. We will define
some sequential 3-swaps (we recall that a sequential i-swap is a closed walk of length 2i
alternating edges of E(C) and edges of E(G)\E(C)). Eventually, all the edges that are not in
a described sequential 3-swap are incident to a vertex of degree 2, making them undeletable.
(One can also enforce that by subdividing every irrelevant edge once.)

The improving 9-move, should there be a triangle abc in H, will consist of a sequence of
three 3-swaps. More precisely, it consists of one improving 3-swap, which splits C into three
cycles respectively containing:
(1) a part of the vertex gadget of some a ∈ A,
(2) the part of the B-side below the vertex gadget of b, as well as the C-side, and
(3) the part of the B-side above the vertex gadget of some b ∈ NH(a) ∩B.
This decreases the total weight by 1. Then a neutral 3-swap reconnects (1) and (2) together,
but also detaches (4) a part of the vertex gadget of some c ∈ NH(a) ∩ C. Finally a neutral
3-swap glues (3), (1)+(2), and (4) together, provided bc ∈ E(H). This results in a new
Hamiltonian cycle of length w(C)− 1.

There will be relatively few edges of weight 2. To simplify the presentation, every edge is
of weight 1, unless specified otherwise. Let ~H be the directed graph obtained from H by
orienting its edges from A to B, from B to C, and from C to A. Note that finding a directed
triangle in ~H is equivalent to finding a triangle in H.
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Vertex scopes, extended scopes, and nested chords. For (X,Y ) ∈ {(A,B), (B,C), (C,A)},
we set Z := {A,B,C} \ {X,Y } and we do the following as a preparatory step to encode the
arcs of ~H. Each vertex v ∈ X is given a (pairwise vertex-disjoint) subpath Iv of C, called the
extended scope of v, with |Iv| := 6(|NH(v) ∩ Y |) + 3(|NH(v) ∩ Z|)− 1 vertices. We think of
Iv as being displayed from left to right with the leftmost vertex of index 1, and the rightmost
one of index |Iv|. The extended scopes of the vertices of A, B, and C occupy respectively
the A-side, B-side, and C-side. In what follows, it will be more convenient to have a circular
notion of left and right. Starting from the bottom corner of the A-side, and going clockwise
to the top corner of the A-side, then down to the bottom corner of the B-side, the relative
left and right within the A-side and the B-side coincide with the usual notion as displayed
in Figure 3a. But then closing the loop from the right corner of the C-side to its left corner,
left and right are switched: the closer to the bottom corner of A (resp. B), the more “right”
(resp. “left”).

Each vertex v ∈ X has |NH(v) ∩ Y | nested chords spaced out every three vertices. More
precisely, the second vertex of Iv is adjacent to the penultimate, the fifth to the one of index
|Iv| − 4, the eighth to the one of index |Iv| − 7, and so on, until |NH(v) ∩ Y | chords are
drawn. Each of these chords is associated to an edge vy ∈ E({v}, Y ), and is denoted by vy.
A vertex just to the right of the left endpoint, or just to the left of the right endpoint, of
such a chord will remain of degree 2 in G. This is the case of the vertices of index 3, 6, . . .
and |Iv| − 2, |Iv| − 5, . . . in Iv. We call l−(v, y) (resp. r−(v, y)) the edge of Iv incident to
both the left endpoint of vy and the vertex just to its left (resp. right endpoint of vy and
the vertex just to its right). Both endpoints of l−(v, y) and of r−(v, y) will eventually have
degree 3 in G.

The chord linking the most distant vertices in Iv is called the outermost chord, while
the one linking the closest pair is called the innermost chord. We also say that a chord e is
wider than a chord e′ if e links a farther pair on Iv than e′ does. The central path Jv ⊂ Iv
on |Iv| − (6|NH(v) ∩ Y | − 4) = 3(|NH(v) ∩ Z| + 1) vertices, surrounded by the innermost
chord, is called the scope of v. We map in one-to-one correspondence the edges of E({v}, Z)
to every three edges of Jv starting from the third edge (that is, the third, sixth, and so on).
Note that we have the exact space to do so, since |Jv| = 3(|NH(v) ∩ Z|+ 1). We denote by
zv the edge in Jv corresponding to the edge vz ∈ E({v}, Z).

Encoding the arcs of ~H. The last step to encode the arcs of ~H, or equivalently the edges
of H, is the following. Keeping the notations of the previous paragraphs, for every edge
xy ∈ E(X,Y ), we add two chords (of weight 1): one chord l+(x, y) between the left endpoint
of l−(x, y) and the right endpoint of xy and one chord r+(x, y) between the right endpoint of
r−(x, y) and the left endpoint of xy. We finish the construction of G (and C) by subdividing
each edge between consecutive extended scopes once, to make the resulting edges undeletable.
The edges l−(a, b) for (a, b) ∈ A × B get weight 2, while all the other edges of E(G) get
weight 1. This finishes the construction of (G,w, C). See Figure 3a for an illustration.

Improving and neutral 3-swaps. For each (x, y) ∈ E( ~H), denote by S(x, y) the 3-swap
({xy, l−(x, y), r−(x, y)}, {xy, l+(x, y), r+(x, y)}). For (X,Y ) ∈ {(A,B), (B,C), (C,A)}, we
define the set of 3-swaps S(X,Y ) :=

⋃
xy∈E(X,Y )

S(x, y), and S := S(A,B)∪S(B,C)∪S(C,A).

Note that all the 3-swaps of S(A,B) are improving. They gain 1 since l−(a, b) has weight
2 for any (a, b) ∈ A × B. On the other hand, all the 3-swaps of S(B,C) and S(C,A) are
neutral. The edges added in swaps of S partition the chords of G, and the open neighborhood
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(a) The construction for the instance of Figure 2.
Edges of C are in black, chords are in red, bold
edges are the ones with weight 2. The three
chords in blue are the edges to add to perform
the neutral 3-swap S(5, 1) of S(C,A).
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(b) The 9-move corresponding to the triangle
135 results in a Hamiltonian cycle using one less
edge of weight 2. Note that after the swaps
S(1, 3) and S(5, 1) are performed, the only 3-
swap that can reconnect the three cycles into
one, is S(3, 5), implying the existence of the
edge 35, and thereby of the triangle 135.

Figure 3 Illustration of the reduction (left) and of a potential solution (right).

of the six vertices involved in every swap are six vertices of degree 2 in G. Therefore, all the
possible swaps are in the set S, they are on vertex-disjoint sets of vertices, and any move is
a sequence of 3-swaps of S.

The vertices of C are incident to at most one chord. Hence the graph G is subcubic. It
has

∑
v∈V (H) 1 + |Iv| 6 9|E(H)|+ |V (H)| = Θ(m) vertices and (G,w, C) takes Θ(m)-time

to build. To summarize, we defined a linear reduction from Triangle Detection with
parameter m to Subcubic 9-opt Detection with parameter n. So a quasi-linear algorithm
for the latter would yield an unlikely quasi-linear algorithm for the former. We now check
that the reduction is correct.

A triangle in H implies an improving 9-move for (G, w, C). Let abc be a triangle in
H. In particular, all three swaps S(a, b), S(b, c), and S(c, a) exist. Performing these three
3-swaps results in a spanning union of (vertex-disjoint) cycles, whose total weight is w(C)− 1.
Indeed S(a, b) is swap of weight −1, while S(b, c), and S(c, a) are both neutral.

We thus only need to show that the three swaps result in a connected graph (hence,
Hamiltonian cycle of lighter weight). By performing the 3-swap S(a, b), we create three
components: (1) one on a vertex set Ka,b such that Ja ⊆ Ka,b ⊆ Ia, (2) one containing
the scopes of vertices of the B-side to the right (lower part) of the scope of b, and (3) one
containing the scopes of vertices of the B-side to the left (upper part) of the scope of b. Then
the swap S(c, a) glues (1) and (2) together, but also disconnects (4) a cycle on a vertex set
Kc,a such that Jc ⊆ Kc,a ⊆ Ic. At this point, there are three cycles: (3), (1)+(2), and (4).
It turns out that the 3-swap S(b, c) deletes exactly one edge in each of these three cycles:
bc in (4), l−(b, c) in (3), and r−(b, c) in (1)+(2). Therefore, S(b, c) reconnects these three
components into one Hamiltonian cycle.

An improving k-move for (G, w, C) with k 6 9 implies a triangle in H. We assume that
there is an improving k-moveM = (E−, E+) for (G,w, C) with k 6 9. Being improving, the
k-move has to contain at least one improving 3-swap of S(A,B). Let S(a, b) be a 3-swap of
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S(A,B) inM such that for every other (improving) 3-swap S(a, b′) inM, the chord ab′ is
wider than ab. Since S(a, b) exists, it holds in particular that ab ∈ E(H). Performing S(a, b)
results in the union of three cycles: (1) on a vertex set Ka,b with Ja ⊆ Ka,b ⊆ Ia, and cycles
(2) and (3) as described in the previous paragraph.

By the choice of b, the only remaining swaps of M touching Ka,b are in S(C,A). So
M has to contain a neutral 3-swap S(c, a) for some c ∈ C. This implies that ac ∈ E(H).
Performing this swap results in three cycles: (3), (1)+(2), and (4), as described above. To
reconnect all three components into one Hamiltonian cycle, the 3-swap has to delete exactly
one edge in (3), (1)+(2), and (4). The only 3-swap that does so is S(b, c). This finally implies
that bc ∈ E(H). Thus abc is a triangle in H. J

We obtain the following theorem as a direct consequence of the previous lemma.

I Theorem 10. Subcubic 9-opt Detection requires time:
(1) n1+δ−o(1) for a fixed δ > 0, under the triangle hypothesis, and
(2) n4/3−o(1), under the strong triangle hypothesis,
in expectation, even in undirected graphs with edge weights in {1, 2}.

If we use general integral weights and not just {1, 2}, we can show a stronger lower
bound, by reducing from Negative Edge-Weighted Triangle. Again, we can assume
that the instance is partitioned into three sets A, B, C, and we look for a triangle abc
such that w′(ab) + w′(bc) + w′(ac) < 0, where w′ gives an integral weight to each edge.
A truly subcubic (in the number of vertices) algorithm for this problem would imply one
for All-Pairs Shortest Paths, which would be considered a major breakthrough. The
assumption that such an algorithm is not possible is called the APSP hypothesis.

We only change the above construction in the weight of the edges l−(x, y). Now each edge
l−(x, y) gets weight −w′(xy). From a Negative Edge-Weighted Triangle-instance with
n vertices, we obtain an equivalent instance of Subcubic 9-opt Detection with O(n2)
vertices, in time O(n2). So we derive the following.

I Theorem 11. Subcubic 9-opt Detection requires time n3/2−o(1), under the APSP
hypothesis.

6 Lower bound for varying k

In this section we describe the main ideas behind the lower bound for k-opt Detection
in subcubic graphs for varying k. The details are deferred to the full version due to space
restrictions. The overall approach is similar to the lower bound of Guo et al. [6], in that
we give a linear-parameter reduction from the k-Partitioned Subgraph Isomorphism
problem parameterized by the number of edges k. Marx [14] proved that, assuming the
Exponential Time Hypothesis, the problem cannot be solved in time f(k) · no(k/ log k) for
any function f .

The instance created in the reduction of Guo et al. [6] may contain vertices of arbitrarily
large degrees. To obtain such a reduction to k-opt Detection in subcubic graphs, an
essential ingredient is a choice gadget with terminal pairs (x0, y0), . . . , (x`, y`) which enforces
that sufficiently cheap Hamiltonian cycles that enter at xi, must leave via the corresponding yi.
The gadget can be implemented by suitable weight settings and vertices of degree at most three.
This gadget allows us to enforce synchronization properties, which enforce that an improved
Hamiltonian cycle first selects which vertices to use in the image of the subgraph isomorphism,
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and then selects incident edges for each selected vertex. By carefully coordinating the gadgets,
this allows us to implement the hardness proof by an edge selector strategy. It leads to a
proof of the following theorem.

I Theorem 12. There is no function f for which k-opt Detection on n-vertex graphs of
maximum degree 3 with edge weights in {1, 2} can be solved in time f(k) · no(k/ log k), unless
ETH fails.

We remark that the lower bound also holds for permissive local search algorithms which
output an improved Hamiltonian cycle of arbitrarily large Hamming distance to the starting
cycle C, if a cheaper cycle exists in the k-opt neighborhood of C.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular Conjectures Imply Strong Lower

Bounds for Dynamic Problems. In Proc. 55th FOCS, pages 434–443. IEEE Computer Society,
2014. doi:10.1109/FOCS.2014.53.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and Counting Given Length Cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

3 Marek Cygan, Lukasz Kowalik, and Arkadiusz Socala. Improving TSP Tours Using Dynamic
Programming over Tree Decompositions. In Proc. 25th ESA, volume 87 of LIPIcs, pages
30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.
ESA.2017.30.

4 Mark de Berg, Kevin Buchin, Bart M. P. Jansen, and Gerhard J. Woeginger. Fine-Grained
Complexity Analysis of Two Classic TSP Variants. In Proc. 43rd ICALP, volume 55 of LIPIcs,
pages 5:1–5:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

5 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a Sparse Table with O(1)
Worst Case Access Time. J. ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

6 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The Parameterized Complexity
of Local Search for TSP, More Refined. Algorithmica, 67(1):89–110, 2013. doi:10.1007/
s00453-012-9685-8.

7 Michael Held and Richard M. Karp. The traveling-salesman problem and minimum spanning
trees: Part II. Math. Program., 1(1):6–25, 1971.

8 Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research, 126(1):106–130, 2000. doi:10.1016/
S0377-2217(99)00284-2.

9 Keld Helsgaun. General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program.
Comput., 1(2-3):119–163, 2009.

10 D. S. Johnson and L. A. McGeoch. Experimental Analysis of Heuristics for the STSP. In
G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and its Variations, pages
369–443. Kluwer Academic Publishers, Dordrecht, 2002.

11 D.S. Johnson and L.A McGeoch. The traveling salesman problem: A case study in local
optimization. In E. Aarts and J.K. Lenstra, editors, Local search in combinatorial optimization,
pages 215–310. Wiley, Chichester, 1997.

12 S. Lin and Brian W. Kernighan. An Effective Heuristic Algorithm for the Traveling-Salesman
Problem. Operations Research, 21(2):498–516, 1973. doi:10.1287/opre.21.2.498.

13 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett.,
36(1):31–36, 2008. doi:10.1016/j.orl.2007.02.008.

14 Dániel Marx. Can You Beat Treewidth? Theory of Computing, 6(1):85–112, 2010. doi:
10.4086/toc.2010.v006a005.

15 Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An Introduction.
Texts and Monographs in Computer Science. Springer, 1985.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1007/BF02523189
https://doi.org/10.4230/LIPIcs.ESA.2017.30
https://doi.org/10.4230/LIPIcs.ESA.2017.30
https://doi.org/10.1145/828.1884
https://doi.org/10.1007/s00453-012-9685-8
https://doi.org/10.1007/s00453-012-9685-8
https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1016/j.orl.2007.02.008
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005

	Introduction
	Motivation
	Our contributions
	Organization

	Preliminaries
	Fast XP algorithms
	Fast algorithms for small k
	Lower bound for k=9
	Lower bound for varying k

