15,092 research outputs found

    The Right Mutation Strength for Multi-Valued Decision Variables

    Full text link
    The most common representation in evolutionary computation are bit strings. This is ideal to model binary decision variables, but less useful for variables taking more values. With very little theoretical work existing on how to use evolutionary algorithms for such optimization problems, we study the run time of simple evolutionary algorithms on some OneMax-like functions defined over Ω={0,1,,r1}n\Omega = \{0, 1, \dots, r-1\}^n. More precisely, we regard a variety of problem classes requesting the component-wise minimization of the distance to an unknown target vector zΩz \in \Omega. For such problems we see a crucial difference in how we extend the standard-bit mutation operator to these multi-valued domains. While it is natural to select each position of the solution vector to be changed independently with probability 1/n1/n, there are various ways to then change such a position. If we change each selected position to a random value different from the original one, we obtain an expected run time of Θ(nrlogn)\Theta(nr \log n). If we change each selected position by either +1+1 or 1-1 (random choice), the optimization time reduces to Θ(nr+nlogn)\Theta(nr + n\log n). If we use a random mutation strength i{0,1,,r1}ni \in \{0,1,\ldots,r-1\}^n with probability inversely proportional to ii and change the selected position by either +i+i or i-i (random choice), then the optimization time becomes Θ(nlog(r)(log(n)+log(r)))\Theta(n \log(r)(\log(n)+\log(r))), bringing down the dependence on rr from linear to polylogarithmic. One of our results depends on a new variant of the lower bounding multiplicative drift theorem.Comment: an extended abstract of this work is to appear at GECCO 201

    Non-perturbative renormalization of moments of parton distribution functions

    Full text link
    We compute non-perturbatively the evolution of the twist-2 operators corresponding to the average momentum of non-singlet quark densities. The calculation is based on a finite-size technique, using the Schr\"odinger Functional, in quenched QCD. We find that a careful choice of the boundary conditions, is essential, for such operators, to render possible the computation. As a by-product we apply the non-perturbatively computed renormalization constants to available data of bare matrix elements between nucleon states.Comment: Lattice2003(Matrix); 3 pages, 3 figures. Talk by A.

    The electron spectra in the synchrotron nebula of the supernova remnant G 29.7-0.3

    Get PDF
    EXOSAT results obtained with the imaging instrument (CMA) and the medium energy proportional counters (ME) are discussed. Assuming that the featureless power-law spectrum obtained in the 2 to 10 keV range is synchrotron radiation from relativistic electrons, one derives constraints on magnetic field strength and age of the nebula. The energy spectra of the electrons responsible for the emission in the radio and X-ray ranges are discussed. The great similarity of the physical properties of G 29.7-0.3 and of three synchrotron nebulae containing a compact object observed to pulse in X-rays makes G 29.7 - 0.3 a very promising candidate for further search for pulsed emission. Further observations at infrared wavelengths might reveal the break(s) in the emitted spectrum expected from the radio and X-ray power-law indices and give us more information on the production of the electron populations responsible for the emission of the nebula

    Configurable Process Models as a Basis for Reference Modeling

    Get PDF
    Off-the-shelf packages such as SAP need to be configured to suit the requirements of an organization. Reference models support the configuration of these systems. Existing reference models use rather traditional languages. For example, the SAP reference model uses Eventdriven Process Chains (EPCs). Unfortunately, traditional languages like EPCs do not capture the configuration-aspects well. Consider for example the concept of "choice" in the control-flow perspective. Although any process modeling language, including EPCs, offers a choice construct (e.g., the XOR connector in EPCs), a single construct will not be able to capture the time dimension, scope, and impact of a decision. Some decisions are taken at run-time for a single case while other decisions are taken at build-time impacting a whole organization and all current and future cases. This position paper discusses the need for configurable process models as a basic building block for reference modeling. The focus is on the control-flow perspective. © Springer-Verlag Berlin Heidelberg 2006

    Multi-scale strain-stiffening of semiflexible bundle networks

    Get PDF
    Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation Factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.Comment: 27 pages including 8 figures and Supplementary Dat

    Molecular abundances and low-mass star formation. I: Si- and S-bearing species toward IRAS 16293-2422

    Get PDF
    Results from millimeter and submillimeter spectral line surveys of the protobinary source IRAS 16293-2422 are presented. Here we outline the abundances of silicon- and sulfur-containing species. A combination of rotation diagram and full statistical equilibrium/radiative transfer calculations is used to constrain the physical conditions toward IRAS 16293 and to construct its beam-averaged chemical composition over a 10-20" (1600-3200 AU) scale. The chemical complexity as judged by species such as SiO, OCS, and H_2S, is mtermedtate between that of dark molecular clouds such as Ll34N and hot molecular cloud cores such as Orion KL. From the richness of the spectra compared to other young stellar objects of similar luminosity, it is clear that molecular abundances do not scale simply with mass; rather, the chemistry is a strong function of evolutionary state, i.e., age

    Continuous external momenta in non-perturbative lattice simulations: a computation of renormalization factors

    Full text link
    We discuss the usage of continuous external momenta for computing renormalization factors as needed to renormalize operator matrix elements. These kind of external momenta are encoded in special boundary conditions for the fermion fields. The method allows to compute certain renormalization factors on the lattice that would have been very difficult, if not impossible, to compute with standard methods. As a result we give the renormalization group invariant step scaling function for a twist-2 operator corresponding to the average momentum of non-singlet quark densities.Comment: 28 pages, 10 figure
    corecore