
This is the author’s version of a work that was submitted/accepted for pub-
lication in the following source:

Van der Aalst, Wil, Dreiling, Alexander, Gottschalk, Florian, Rosemann,
Michael, & Jansen-Vullers, Monique (2006) Configurable Process Models
as a Basis for Reference Modeling. Business Process Management Work-
shops (LNCS 3812), pp. 512-518.

This file was downloaded from: http://eprints.qut.edu.au/22487/

c© Springer-Verlag

Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:

http://dx.doi.org/10.1007/11678564_47

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10889227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.qut.edu.au/view/person/van_der_Aalst,_Wil.html
http://eprints.qut.edu.au/view/person/Dreiling,_Alexander.html
http://eprints.qut.edu.au/view/person/Rosemann,_Michael.html
http://eprints.qut.edu.au/view/person/Rosemann,_Michael.html
http://eprints.qut.edu.au/22487/
http://dx.doi.org/10.1007/11678564_47

Configurable Process Models as a Basis for

Reference Modeling

– position paper –

W.M.P. van der Aalst1,3, A. Dreiling2,3, F. Gottschalk1, M. Rosemann3, and
M.H. Jansen-Vullers1

1 Department of Technology Management, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl
2 European Research Center for Information Systems, University of Münster

Leonardo-Campus 3, 48149 Münster, Germany.
3 Queensland University of Technology, 126 Margaret St, Brisbane, QLD 4000,

Australia.

Abstract. Off-the-shelf packages such as SAP need to be configured
to suit the requirements of an organization. Reference models support
the configuration of these systems. Existing reference models use rather
traditional languages. For example, the SAP reference model uses Event-
driven Process Chains (EPCs). Unfortunately, traditional languages like
EPCs do not capture the configuration-aspects well. Consider for ex-
ample the concept of “choice” in the control-flow perspective. Although
any process modeling language, including EPCs, offers a choice construct
(e.g., the XOR connector in EPCs), a single construct will not be able
to capture the time dimension, scope, and impact of a decision. Some
decisions are taken at run-time for a single case while other decisions
are taken at build-time impacting a whole organization and all current
and future cases. This position paper discusses the need for configurable
process models as a basic building block for reference modeling. The focus
is on the control-flow perspective.

1 Introduction

The main objective of reference models is to streamline the design of partic-
ular models by providing a generic solution [19]. The application of reference
models is motivated by the “Design by Reuse” paradigm. Reference models ac-
celerate the modeling and configuration process by providing a repository of
potentially relevant models. These models are ideally “plug and play” but often
require some customization/configuration to be adjusted to individual require-
ments [7]. A configurable process model provides rules defining how a reference
model can be adapted. Such a generating adaptation must be distinguished from
non-generating adaptations as, e.g., aggregation, specialization or instantiation
[5]. Unfortunately, the languages used for reference modeling [4, 8, 18] provide lit-
tle or no support for configuration. The goal of this position paper is to discuss
the need for configurable process models.

One of the most comprehensive models is the SAP reference model [8]. Its
data model includes more than 4000 entity types and the reference process mod-
els cover more than 1000 business processes and inter-organizational business
scenarios [19]. Most of the other dominant ERP vendors have similar or alter-
native approaches towards reference models. Foundational conceptual work for
the SAP reference model has been conducted by SAP AG and the IDS Scheer
AG in a collaborative research project in the years 1990-1992 [13]. The outcome
of this project was the process modeling language Event-Driven Process Chains
(EPCs) [13, 14], which has been used for the design of the reference process mod-
els in SAP. EPCs also became the core modeling language in the Architecture
of Integrated Information Systems (ARIS) [21, 22]. It is now one of the most
popular reference modeling languages and has also been used for the design of
many SAP-independent reference models (e.g., the ARIS-based reference model
for Siebel CRM or industry models for banking, retail, insurance, telecommu-
nication, etc.). Despite its success, the basic EPC model offers little support for

process configuration. It contains (X)OR connectors but it is unclear whether the
corresponding decisions need to be taken at run-time (e.g., based on the stock-
level), at build-time (e.g., based on the size of the organization using SAP), or
somewhere in-between (e.g., based on the period of the year or resource avail-
ability). Therefore, we developed the so-called Configurable EPCs (C-EPCs) [19,
9], a generic-monolithic approach for constructing re-usable models [10]. Indeed
C-EPCs are extending the configuration opportunities of build-time operators
[23, 20, 17]. However, they only provide a partial solution as they are only a rep-
resentation variation, based on a specific language (EPCs), allowing the user
to select or hide elements [5, 6]. In this position paper we would like to trig-
ger a discussion on requirements for configurable process models in a broader
perspective.

The remainder of the paper is organized as follows. First, we elaborate on the
concept of “choice” which is essential for configurable process models. Second,
we approach the problem from a more theoretical viewpoint, i.e., we depict what
the essence of configuration is. Finally, we briefly discuss Configurable EPCs as
a first step towards such configurable models.

2 Configuration: It is all about making choices

This paper focuses on configurable process models, i.e., we restrict ourselves to
the control-flow perspective [12]. There are many languages to model processes
ranging from formal (e.g., Petri nets and process algebras such as Pi calculus)
to informal (flow charts, activity diagrams, EPCs, etc.). Each of these languages
provides some notion of choice (e.g., two transitions sharing a single input place
in a Petri net or an (X)OR-split connector in an EPC). Typically, it is not
possible to describe the nature of such a choice. At best one can either specify
a Boolean condition based on some data element (data-based decision) or one
can specify events that have to occur for triggering paths (event-based decision)
[16]. The usual interpretation is that a choice is made at run-time, based on such

a Boolean condition or based on occurring events. In the context of reference

models, this interpretation is too narrow.

The scope of a decision can vary. For example, if a hospital uses a rule like
“If a patient has high blood pressure a day before the planned operation, the
operation will be canceled”, then the scope of each choice (operate or not) is
limited to a single patient. There may also be choices which affect more cases,
e.g., consider the rule “If there is a major disaster in the region, all planned
operations will be canceled.” or also an entire process, e.g., “The admittance
process requires patients to pre-register.”. There may even be choices that affect
all processes in some organizations. The classical process modeling languages,
e.g., the languages used in workflow management systems [2, 12], allow only for
one level of choices. Reference models have to allow for a broader spectrum of
choices. Such choices are called configuration choices and are made at build-time.
Configuration choices also affect choices at run-time. For example, at build-time
one can choose not to use specific functionality offered by the system. Then
no choice needs to be made at run-time anymore. But it may also be possible
to use the functionality conditionally (e.g., depending on the workload). In this
case the choice must be made at run-time. One can view configuration as limiting

choices by making choices. Seen from this viewpoint, process modeling languages
need to distinguish between run-time choices and configuration choices (i.e., at
build-time). Note that the borderline between run-time choices and configuration
choices may be a bit fuzzy as the following examples show.

– Based on the volume of the order, the goods are shipped by truck or mail.
– On Saturday, goods are shipped by truck.
– If stock is below 100 items, only preferred customers are serviced.
– The Dutch branches require a deposit, while this is not needed for branches

in other countries.
– The organization chooses not to allow for pre-shipments.

Each of these choices is at another level. However, the processes in e.g. the SAP
reference model show only one type of choice: the (X)OR-split connector. This
triggered us to develop the so-called C-EPCs.

3 Configuration: A theoretical perspective

As described above a reference model provides a generic solution that needs to be
configured for a specific situation. A generic-monolithic approach for model re-
use should guide the user to a solution fitting to the individual requirements [10].
Therefore the reference model must be able to provide a complete, integrated
set of all possible process configurations. This means the reference model is
the least common multiple of all process variations, which leads to inheritance

of dynamic behavior [1, 3]. A reference model can be seen as a subclass of all
concrete models. A concrete model itself is a superclass of the reference model.
This may create confusion as the term “super” is intuitively connected to the
bigger and at first existing reference model (e.g., in [24] traditional inheritance

was altered to depict the reference model as superclass). However, it corresponds
to the traditional notion of inheritance in which the subclass adds things to
the superclass (e.g., additional methods or attributes). So configuration can be
described as the reverse of inheritance. This allows us to use some of the ideas
described in [1, 3], in particular we use the idea of hiding and blocking.

(a) (b) (c)

Fig. 1. Three labeled transition systems: (a) the initial model (e.g., the reference
model), (b) a particular configuration hiding and blocking specific edges/labels, and
(c) the resulting model.

Any process model having formal semantics can be mapped onto a labeled
transition system. The nodes in a labeled transition system represent states, the
directed edges represent transitions, and each transition has a label denoting
some event, action or activity. Traditional choices in the process model, cor-
respond to nodes in the labeled transition system with multiple output arcs.
Consider Figure 1(a) showing a labeled transition system. In the initial state
(the top node, edges go from top to bottom) there is a choice between a and b.
If a is selected, the next step is c and then there is a choice between d and e,
etc. If we consider Figure 1(a) to be a reference model, a configuration of this
model should select the desired parts. This can be done by blocking and hiding
edges or labels. In Figure 1(b) one edge is blocked and three edges are hidden.
Hiding and blocking should be interpreted as in [1, 3], i.e., hiding corresponds
to abstraction and blocking corresponds to encapsulation. If an edge is blocked,
it cannot be taken anymore. By hiding an edge the path is still possible but
the associated label is no longer relevant, i.e., it is renamed to a silent step τ .
One can think of the latter as simply skipping the edge. Figure 1(c) shows the
resulting model after blocking and hiding the edges indicated in Figure 1(b).

A configurable process model should allow for the specification of which
edges/labels can be blocked and hidden/skipped. An interesting question is
whether it should be possible to defer this decision to run-time. In the latter
case, there would be two more options: optional blocking and optional hiding (to
be decided at run-time).

4 Configuration: An example of a language

To conclude this position paper we introduce Configurable EPCs (C-EPCs) as an
example for a configurable process modeling language. C-EPCs are an extension
of the classical EPCs [13]. A classical EPC consists of functions (i.e., the activi-
ties), events and connectors. Functions follow events and events follow functions.
Moreover, to model splits and joins in a process connectors may be used. There
are three types of connectors: AND, OR and XOR. AND-splits and AND-joins
may be used to model parallel routing. XOR-splits and XOR-joins may be used
to model the selection of specific routes (e.g., an “if then else” construct). OR-
splits and OR-joins may be used to model a mixture of conditional and parallel
routing. (However, the semantics of the OR-join is still debated [14].)

In a C-EPC both functions and connectors may be configurable. Configurable
functions may be included (ON), skipped (OFF) or conditionally skipped (OPT).
Configurable connectors may be restricted at build-time, e.g., a configurable
connector of type OR may be mapped onto an AND connector. Local config-
uration choices like skipping a function may be limited by configuration re-
quirements. For example, if one configurable connector c of type OR is mapped
onto an XOR connector, then another configurable function f needs to be in-
cluded. This configuration requirement may be denoted by the logical expres-
sion; c = OR ⇒ f = ON . In addition to these requirements it is possible to add
guidelines, supporting the configuration process.

Figure 2 shows a C-EPC describing an invoice verification process. The classi-
cal EPC is extended with configurable functions and connectors (indicated using
thick lines). For example function Invoicing Plan Settlement is configurable, i.e.,
it may be included (ON), skipped (OFF) or conditionally skipped (OPT). The
diagram shows also some configurable connectors. In this position paper we do
not further elaborate on C-EPCs. For more information, we refer to [19, 9]. The
important thing to note is that it is possible to extend a language like EPCs with
configurable elements. Moreover, there are two types of choices: (1) configuration
choices made at build-time and (2) “normal” choices made at run-time.

C-EPCs can be seen as a rather naive, but very intuitive, configuration lan-
guage that allows (optionally) blocking and hiding of edges/labels at build-time
for specifying the configuration of the model. Using the theory developed in [1, 3]
and basic notions such as simulation, bisimulation, and branching bisimulation
[11, 15] on the one hand and practical experiences using C-EPCs on the other
hand, we hope to develop more mature configuration languages.

The aim of this position paper is to trigger a discussion on configurable
process models. To do this we argued that configuration is strongly related to

Purchase

order

c reated

Service is

accepted

Goods

rec eipt

pos ted

Invoice

received

V

V

Process

Invoice

XOR

G/R to be

settled

a utoma-

tically

Eva luated

Receipt

Settlement

(ERS)

Invoice

transmitted

for vendor’s
records

Material is

released

Invoice

posted

and blocked

for rele ase

Invoicing

plans

require

settlement

Invoicing

Plan

Settlement

V

Release

Invoice

manua lly

Invoice

rele ased

V

GUIDELINE

ERS = ON, if long term

contract with suppl iers

a nd goods and

condit ions are specified

REQUIREM ENT

IPS = ON

ERS = ON

Consign-

ment/

pipeline

li abili ty is

crea ted

Consign-

ment/

pipe line

liabilit ies

are to be

se ttled

Consign-

ment/

Pipeline

Settlement

V

XOR

V

Consign-

ment/

pipe line

settlement

document

tra nsmitted

XOR

XOR

Invoice

posted

(not blocked

for release)

Release

Invoice

automa-

tically

Fig. 2. A Configurable EPC.

the timing and scope of choices. We also showed an example of a language (C-
EPCs). However, to allow for a more language-independent discussion we also
tried to capture the essence of configuration in terms of (optional) hiding and
blocking of edges or labels.

References

1. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270(1-
2):125–203, 2002.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

3. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic
and Algebraic Programming, 47(2):47–145, 2001.

4. J. Becker, M. Kugeler, and M. Rosemann, editors. Process Management: A Guide
for the Design of Business Processes. Springer-Verlag, Berlin, 2003.

5. J. Becker, P. Delfmann, R. Knackstedt. Konstruktion von Referenzmodel-
lierungssprachen: Ein Ordnungsrahmen zur Spezifikation von Adaptionsmecha-
nismen für Informationsmodelle. In WIRTSCHAFTSINFORMATIK, 46(2004)4,
pages 251–264.

6. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, D. Kuropka. Configurative
Process Modeling – Outlining an Approach to increased Business Process Model
Usability. In Proceedings of the 15th Information Resources Management Associ-
ation International Conference. New Orleans, 2004.

7. P. Bernus. Generalised Enterprise Reference Architecture and Methodology, Ver-
sion 1.6.3. IFIPIFAC Task Force on Architectures for Enterprise Integration, 1999.

8. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Upper Saddle River, 1997.

9. A. Dreiling, M. Rosemann, W.M.P. van der Aalst, W. Sadiq, and S. Khan. Model-
driven process configuration of enterprise systems. In O.K. Ferstl, E.J. Sinz, S. Eck-
ert, and T. Isselhorst, editors, Wirtschaftsinformatik 2005. eEconomy, eGovern-
ment, eSociety, pages 687–706, Physica-Verlag, Heidelberg, 2005.

10. P. Fettke and P. Loos. Methoden zur Wiederverwendung von Referenzmodellen
– Übersicht und Taxonomie. In J. Becker, R. Knackstedt, editors, Referenzmod-
ellierung 2002: Methoden – Modelle – Erfahrungen, Arbeitsberichte des Instituts
für Wirtschaftsinformatik Nr. 90 (in German), pages 9–33. University of Münster,
Münster, 2002.

11. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. In Journal of the ACM, 43(3):555–600, 1996.

12. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

13. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

14. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in
Computer Science, pages 82–97. Springer-Verlag, Berlin, 2004.

15. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

16. M. Owen and J. Raj. BPMN and Business Process Management – Introduction to
the New Business Process Modeling Standard, Popkin Software, 2003.

17. M. Rosemann. Komplexitätsmanagement in Prozessmodellen: methodenspezifische
Gestaltungsempfehlungen für die Informationsmodellierung (in German). Gabler,
Wiesbaden, 1996.

18. M. Rosemann. Application Reference Models and Building Blocks for Management
and Control (ERP Systems). In P. Bernus, L. Nemes, and G. Schmidt, editors,
Handbook on Enterprise Architecture, pages 596–616. Springer-Verlag, Berlin, 2003.

19. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. In Information Systems (to appear, also available from BPMCenter.org),
2005.

20. M. Rosemann and R. Schütte. Grundsätze ordnungsmäßiger Referenzmodellierung.
In J. Becker, M. Rosemann, R. Schütte, editors, Entwicklungsstand und Perspek-
tiven der Referenzmodellierung, Arbeitsberichte des Instituts für Wirtschaftsinfor-
matik Nr. 52 (in German), pages 16–33. University of Münster, Münster, 1997.

21. A.W. Scheer. Business Process Engineering, Reference Models for Industrial En-
terprises. Springer-Verlag, Berlin, 1994.

22. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.
23. R. Schütte. Grundsätze ordnungsmäßiger Referenzmodellierung – Konstruktion

konfigurations- und anpassungsorientierter Modelle (in German). Gabler, Wies-
baden, 1998.

24. A. Schwegmann. Objektorientierte Referenzmodellierung: theoretische Grundlagen
und praktische Anwendung (in German). Gabler, Wiesbaden, 1999.

