70 research outputs found
Real-Time MRI Guidance for Reproducible Hyperosmolar Opening of the Blood-Brain Barrier in Mice
The blood-brain barrier (BBB) prevents effective delivery of most therapeutic agents to the brain. Intra-arterial (IA) infusion of hyperosmotic mannitol has been widely used to open the BBB and improve parenchymal targeting, but the extent of BBB disruption has varied widely with therapeutic outcomes often being unpredictable. In this work, we show that real-time MRI can enable fine-tuning of the infusion rate to adjust and predict effective and local brain perfusion in mice, and thereby can be allowed for achieving the targeted and localized BBB opening (BBBO). Both the reproducibility and safety are validated by MRI and histology. The reliable and reproducible BBBO we developed in mice will allow cost-effective studies on the biology of the BBB and drug delivery to the brain. In addition, the IA route for BBBO also permits subsequent IA delivery of a specific drug during the same procedure and obtains high targeting efficiency of the therapeutic agent in the targeted tissue, which has great potential for future clinical translation in neuro-oncology, regenerative medicine and other neurological applications
Cell-based therapies for stroke : promising solution or dead end?
The introduction of recanalization procedures has revolutionized acute stroke management, although the narrow time window, strict eligibility criteria and logistical limitations still exclude the majority of patients from treatment. In addition, residual deficits are present in many patients who undergo therapy, preventing their return to premorbid status. Hence, there is a strong need for novel, and ideally complementary, approaches to stroke management.
In preclinical experiments, cell-based treatments have demonstrated beneficial effects in the subacute and chronic stages following stroke [1; 2; 3] and therefore are considered a promising option to supplement current clinical practice. At the same time, great progress has been made in developing clinically feasible delivery and monitoring protocols [4]. However, efficacy results initially reported in clinical studies fell short of expectations [5] raising concerns that cell treatment might eventually share the ‘dead end fate’ of many previous experimental stroke therapies. This Research Topic reviews some of the latest and most innovative studies to summarize the state of the art in translational cell treatments for stroke
Biomarker Application for Precision Medicine in Stroke
Stroke remains one of the leading causes of long-term disability and mortality despite recent advances in acute thrombolytic therapies. In fact, the global lifetime risk of stroke in adults over the age of 25 is approximately 25%, with 24.9 million cases of ischemic stroke and 18.7 million cases of hemorrhagic stroke reported in 2015. One of the main challenges in developing effective new acute therapeutics and enhanced long-term interventions for stroke recovery is the heterogeneity of stroke, including etiology, comorbidities, and lifestyle factors that uniquely affect each individual stroke survivor. In this comprehensive review, we propose that future biomarker studies can be designed to support precision medicine therapeutic interventions after stroke. The current challenges in defining ideal biomarkers for stroke are highlighted, including consideration of disease course, age, lifestyle factors, and subtypes of stroke. This overview of current clinical trials includes biomarker collection, and concludes with an example of biomarker design for aneurysmal subarachnoid hemorrhage. With the advent of -omics studies, neuroimaging, big data, and precision medicine, well-designed stroke biomarker trials will greatly advance the treatment of a disease that affects millions globally every year
Two in one: use of divalent manganese ions as both cross-linking and MRI contrast agent for intrathecal injection of hydrogel-embedded stem cells
Cell therapy is a promising tool for treating central nervous system (CNS) disorders; though, the translational efforts are plagued by ineffective delivery methods. Due to the large contact surface with CNS and relatively easy access, the intrathecal route of administration is attractive in extensive or global diseases such as stroke or amyotrophic lateral sclerosis (ALS). However, the precision and efficacy of this approach are still a challenge. Hydrogels were introduced to minimize cell sedimentation and improve cell viability. At the same time, contrast agents were integrated to allow image-guided injection. Here, we report using manganese ions (Mn2+) as a dual agent for cross-linking alginate-based hydrogels and magnetic resonance imaging (MRI). We performed in vitro studies to test the Mn2+ alginate hydrogel formulations for biocompatibility, injectability, MRI signal retention time, and effect on cell viability. The selected formulation was injected intrathecally into pigs under MRI control. The biocompatibility test showed a lack of immune response, and cells suspended in the hydrogel showed greater viability than monolayer culture. Moreover, Mn2+-labeled hydrogel produced a strong T1 MRI signal, which enabled MRI-guided procedure. We confirmed the utility of Mn2+ alginate hydrogel as a carrier for cells in large animals and a contrast agent at the same time.This research was funded by The National Centre for Research and Development, grant number 12/EuroNanoMed/2016
Mn-based methacrylated gellan gum hydrogels for MRI-guided cell delivery and imaging
This work aims to engineer a new stable injectable Mn-based methacrylated gellan gum (Mn/GG-MA) hydrogel for real-time monitored cell delivery into the central nervous system. To enable the hydrogel visualization under Magnetic Resonance Imaging (MRI), GG-MA solutions were supplemented with paramagnetic Mn2+ ions before its ionic crosslink with artificial cerebrospinal fluid (aCSF). The resulting formulations were stable, detectable by T1-weighted MRI scans and also injectable. Cell-laden hydrogels were prepared using the Mn/GG-MA formulations, extruded into aCSF for crosslink, and after 7 days of culture, the encapsulated human adipose-derived stem cells remained viable, as assessed by Live/Dead assay. In vivo tests, using double mutant MBPshi/shi/rag2 immunocompromised mice, showed that the injection of Mn/GG-MA solutions resulted in a continuous and traceable hydrogel, visible on MRI scans. Summing up, the developed formulations are suitable for both non-invasive cell delivery techniques and image-guided neurointerventions, paving the way for new therapeutic procedures.SÃlvia Vieira acknowledges the FCT Ph.D. scholarship (SFRH/BD/102710/2014). J. Miguel
Oliveira and J. Silva-Correia acknowledge the FCT grants under the Investigator FCT program
(IF/01285/2015 and IF/00115/2015, respectively). The authors also acknowledge the funds provided under the project NanoTech4ALS, funded under the EU FP7 M-ERA.NET program, and ESF
(POWR.03.02.00-00-I028/17-00)
Intravenous Fluid Administration May Improve Post-Operative Course of Patients with Chronic Subdural Hematoma: A Retrospective Study
Background: The treatment of chronic subdural hematoma (cSDH) is still charged of significant risk of hematoma recurrence. Patient-related predictors and the surgical procedures themselves have been addressed in many studies. In contrast, postoperative management has infrequently been subjected to detailed analysis. Moreover variable intravenous fluid administration (IFA) was not reported in literature till now in the context of cSDH treatment. Methodology/Principal Findings: A total of 45 patients with cSDH were operated in our department via two burr hole craniostomy within one calendar year. Downward drainage was routinely left in hematoma cavity for a one day. Independent variables selected for the analysis were related to various aspects of patient management, including IFA. Two dependent variables were chosen as measure of clinical course: the rate of hematoma recurrence (RHR) and neurological status at discharge from hospital expressed in points of Glasgow Outcome Scale (GOS). Univariate and multivariate regression analyses were performed. Hematoma recurrence with subsequent evacuation occurred in 7 (15%) patients. Univariate regression analysis revealed that length of IFA after surgery influenced both dependent variables: RHR (p = 0.045) and GOS (p = 0.023). Multivariate regression performed by backward elimination method confirmed that IFA is a sole independent factor influencing RHR. Post hoc dichotomous division of patients revealed that those receiving at least 2000 ml/day over 3 day period revealed lower RHR than the group with less intensive IFA. (p = 0.031)
- …