179 research outputs found

    Hematopoietic Stem Cell Mobilization and Homing after Transplantation: The Role of MMP-2, MMP-9, and MT1-MMP

    Get PDF
    Hematopoietic stem/progenitor cells (HSPCs) are used in clinical transplantation to restore hematopoietic function. Here we review the role of the soluble matrix metalloproteinases MMP-2 and MMP-9, and membrane type (MT)1-MMP in modulating processes critical to successful transplantation of HSPC, such as mobilization and homing. Growth factors and cytokines which are employed as mobilizing agents upregulate MMP-2 and MMP-9. Recently we demonstrated that MT1-MMP enhances HSPC migration across reconstituted basement membrane, activates proMMP-2, and contributes to a highly proteolytic bone marrow microenvironment that facilitates egress of HSPC. On the other hand, we reported that molecules secreted during HSPC mobilization and collection, such as hyaluronic acid and thrombin, increase MT1-MMP expression in cord blood HSPC and enhance (prime) their homing-related responses. We suggest that modulation of MMP-2, MMP-9, and MT1-MMP expression has potential for development of new therapies for more efficient mobilization, homing, and engraftment of HSPC, which could lead to improved transplantation outcomes

    Label-free optical monitoring of surface adhesion of extracellular vesicles by grating coupled interferometry

    Get PDF
    In this proof-of-principle study a label-free optical sensor is demonstrated to monitor the surface adhesion of extracellular vesicles secreted by live cells on to various extracellular matrix proteins

    Epstein-Barr Virus-Encoded BARF1 Protein is a Decoy Receptor for Macrophage Colony Stimulating Factor and Interferes with Macrophage Differentiation and Activation

    Get PDF
    Epstein-Barr virus (EBV), like many other persistent herpes viruses, has acquired numerous mechanisms for subverting or evading immune surveillance. This study investigates the role of secreted EBV-encoded BARF1 protein (sBARF1) in creating an immune evasive microenvironment. Wild-type consensus BARF1 was expressed in the human 293 cell line and purified. This native hexameric sBARF1 had inhibitory capacity on macrophage colony stimulating factor (M-CSF)-stimulated, and not on granulocyte macrophage-colony stimulating factor (GM-CSF)-stimulated growth and differentiation of myeloid cells. Antibodies specific to hexameric sBARF1 were able to block this effect. M-CSF was shown to interact with sBARF1 via the protruding N-terminal loops involving Val38 and Ala84. Each BARF1 hexamer was capable of binding three M-CSF dimers. Mutations in the BARF1 loops greatly affected M-CSF interaction, and showed loss of growth inhibition. Analysis of the activation state of the M-CSF receptor c-fms and its downstream kinase pathways showed that sBARF1 prevented M-CSF-induced downstream phosphorylation. Since M-CSF is an important factor in macrophage differentiation, the effect of sBARF1 on the function of monocyte-derived macrophages was evaluated. sBARF1 affected overall survival and morphology and significantly reduced expression of macrophage differentiation surface markers such as CD14, CD11b, CD16, and CD169. Macrophages differentiating in the presence of sBARF1 showed impaired responses to lipopolysaccharide and decreased oxygen radical formation as well as reduced phagocytosis of apoptotic cells. In conclusion, EBV sBARF1 protein is a potent decoy receptor for M-CSF, hampering the function and differentiation of macrophages. These results suggest that sBARF1 contributes to the modulation of immune responses in the microenvironment of EBV-positive carcinoma

    Serum MicroRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study

    Get PDF
    Sepsis is the leading cause of death in Intensive Care Units. Novel sepsis biomarkers and targets for treatment are needed to improve mortality from sepsis. MicroRNAs (miRNAs) have recently been used as finger prints for sepsis, and our goal in this prospective study was to investigate if serum miRNAs identified in genome-wide scans could predict sepsis mortality.We enrolled 214 sepsis patients (117 survivors and 97 non-survivors based on 28-day mortality). Solexa sequencing followed by quantitative reverse transcriptase polymerase chain reaction assays was used to test for differences in the levels of miRNAs between survivors and non-survivors. miR-223, miR-15a, miR-16, miR-122, miR-193*, and miR-483-5p were significantly differentially expressed. Receiver operating characteristic curves were generated and the areas under the curve (AUC) for these six miRNAs for predicting sepsis mortality ranged from 0.610 (95%CI: 0.523-0.697) to 0.790 (95%CI: 0.719-0.861). Logistic regression analysis showed that sepsis stage, Sequential Organ Failure Assessment scores, Acute Physiology and Chronic Health Evaluation II scores, miR-15a, miR-16, miR-193b*, and miR-483-5p were associated with death from sepsis. An analysis was done using these seven variables combined. The AUC for these combined variables' predictive probability was 0.953 (95% CI: 0.923-0.983), which was much higher than the AUCs for Acute Physiology and Chronic Health Evaluation II scores (0.782; 95% CI: 0.712-0.851), Sequential Organ Failure Assessment scores (0.752; 95% CI: 0.672-0.832), and procalcitonin levels (0.689; 95% CI: 0.611-0.784). With a cut-off point of 0.550, the predictive value of the seven variables had a sensitivity of 88.5% and a specificity of 90.4%. Additionally, miR-193b* had the highest odds ratio for sepsis mortality of 9.23 (95% CI: 1.20-71.16).Six serum miRNA's were identified as prognostic predictors for sepsis patients.ClinicalTrials.gov NCT01207531

    The research on the immuno-modulatory defect of Mesenchymal Stem Cell from Chronic Myeloid Leukemia patients

    Get PDF
    Overwhelming evidence from leukemia research has shown that the clonal population of neoplastic cells exhibits marked heterogeneity with respect to proliferation and differentiation. There are rare stem cells within the leukemic population that possess extensive proliferation and self-renewal capacity not found in the majority of the leukemic cells. These leukemic stem cells are necessary and sufficient to maintain the leukemia. While the hematopoietic stem cell (HSC) origin of CML was first suggested over 30 years ago, recently CML-initiating cells beyond HSCs are also being investigated. We have previously isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of Philadelphia chromosome-positive (Ph+) patients with hemangioblast property. Here, we showed that CML patient-derived Flk1+CD31-CD34-MSCs had normal morphology, phenotype and karyotype but appeared impaired in immuno-modulatory function. The capacity of patient Flk1+CD31-CD34- MSCs to inhibit T lymphocyte activation and proliferation was impaired in vitro. CML patient-derived MSCs have impaired immuno-modulatory functions, suggesting that the dysregulation of hematopoiesis and immune response may originate from MSCs rather than HSCs. MSCs might be a potential target for developing efficacious cures for CML

    Mesenchymal Stem Cells Exhibit Firm Adhesion, Crawling, Spreading and Transmigration across Aortic Endothelial Cells: Effects of Chemokines and Shear

    Get PDF
    Mesenchymal stem cells (MSCs) have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs) with, and their migration across, murine aortic endothelial cells (MAECs), and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10min) and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia). They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis

    Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins

    Get PDF
    Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia
    corecore