19 research outputs found

    Identification of Potential Kinase Inhibitors within the PI3K/AKT Pathway of Leishmania Species

    Get PDF
    Leishmaniasis is a public health disease that requires the development of more effective treatments and the identification of novel molecular targets. Since blocking the PI3K/AKT pathway has been successfully studied as an effective anticancer strategy for decades, we examined whether the same approach would also be feasible in Leishmania due to their high amount and diverse set of annotated proteins. Here, we used a best reciprocal hits protocol to identify potential protein kinase homologues in an annotated human PI3K/AKT pathway. We calculated their ligandibility based on available bioactivity data of the reported homologues and modelled their 3D structures to estimate the druggability of their binding pockets. The models were used to run a virtual screening method with molecular docking. We found and studied five protein kinases in five different Leishmania species, which are AKT, CDK, AMPK, mTOR and GSK3 homologues from the studied pathways. The compounds found for different enzymes and species were analysed and suggested as starting point scaffolds for the design of inhibitors. We studied the kinases’ participation in protein–protein interaction networks, and the potential deleterious effects, if inhibited, were supported with the literature. In the case of Leishmania GSK3, an inhibitor of its human counterpart, prioritized by our method, was validated in vitro to test its anti-Leishmania activity and indirectly infer the presence of the enzyme in the parasite. The analysis contributes to improving the knowledge about the presence of similar signalling pathways in Leishmania, as well as the discovery of compounds acting against any of these kinases as potential molecular targets in the parasite.Fil: Ochoa, Rodrigo. Universidad de Antioquia; ColombiaFil: Ortega Pajares, Amaya. University of Melbourne; AustraliaFil: Castello, Florencia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Serral, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaFil: Fernández Do Porto, Darío Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Villa Pulgarin, Janny A.. Coorporación Universitaria Remington; ColombiaFil: Varela M., Rubén E.. Universidad Santiago de Cali; ColombiaFil: Muskus, Carlos. Universidad de Antioquia; Colombi

    Complete inhibition of extranodal dissemination of lymphoma by edelfosine-loaded lipid nanoparticles

    Get PDF
    Lipid nanoparticles (LN) made of synthetic lipids Compritol® 888 ATO and Precirol® ATO 5 were developed, presenting an average size of 110.4 ± 2.1 nm and 103.1 ± 2.9 nm, for Compritol® and Precirol®, respectively, and encapsulation efficiency above 85 % for both type of lipids. These LN decrease the hemolytic toxicity of the drug by 90 %. Pharmacokinetic and biodistribution profiles of the drug were studied after intravenous and oral administration of edelfosine-containing LN, providing an increase in relative oral bioavailability of 1500 % after a single oral administration of drug-loaded LN, maintaining edelfosine plasma levels over 7 days in contrast to a single oral administration of edelfosine solution, which presents a relative oral bioavailability of 10 %. Moreover, edelfosine-loaded LN showed a high accumulation of the drug in lymph nodes and resulted in slower tumor growth than the free drug in a murine lymphoma xenograft model, as well as potent extranodal dissemination inhibition

    New Polyether Triterpenoids from Laurencia viridis and Their Biological Evaluation

    Get PDF
    The red seaweed Laurencia viridis is a rich source of secondary metabolites derived from squalene. New polyethers, such as iubol (2), 22-hydroxy-15(28)- dehydrovenustatriol (3), 1,2-dehydropseudodehydrothyrsiferol (4), and secodehydrothyrsiferol (5) have been isolated and characterized from this alga. The structures were determined through the interpretation of NMR spectroscopic data and the relative configuration was proposed on the basis of NOESY spectrum and biogenetic considerations. All new compounds exhibited significant cytotoxic activity against a panel of cancer cell lines

    In Vitro and In Vivo Efficacy of Ether Lipid Edelfosine against Leishmania spp. and SbV-Resistant Parasites

    Get PDF
    Leishmaniasis represents a major international health problem, has a high morbidity and mortality rate, and is classified as an emerging and uncontrolled disease by the World Health Organization. The migration of population from endemic to nonendemic areas, and tourist activities in endemic regions are spreading the disease to new areas. Unfortunately, treatment of leishmaniasis is far from satisfactory, with only a few drugs available that show significant side-effects. Here, we show in vitro and in vivo evidence for the antileishmanial activity of the ether phospholipid edelfosine, being effective against a wide number of Leishmania spp. causing cutaneous, mucocutaneous and visceral leishmaniasis. Our experimental mouse and hamster models demonstrated not only a significant antileishmanial activity of edelfosine oral administration against different wild-type Leishmania spp., but also against parasites resistant to pentavalent antimonials, which constitute the first line of treatment worldwide. In addition, edelfosine exerted a higher antileishmanial activity and a lower proneness to generate drug resistance than miltefosine, the first drug against leishmaniasis that can be administered orally. These data, together with our previous findings, showing an anti-inflammatory action and a very low toxicity profile, suggest that edelfosine is a promising orally administered drug for leishmaniasis, thus warranting clinical evaluation

    Atherosclerosis: immunopathogenesis and strategies for immunotherapy

    No full text
    Atherosclerosis, a chronic inflammatory condition in which atheroma accumulates within the intima of the arterial wall, is a life-threatening manifestation of cardiovascular disease, due to atheroma rupture, chronic luminal narrowing and thrombosis. Current knowledge of the role of a protective immune response in atherosclerotic lesions has provided promising opportunities to develop new immunotherapeutic strategies. In particular, Tregs exert an atheroprotective role by releasing anti-inflammatory cytokines (IL-10/TGF-β) and suppressing autoreactive T lymphocytes. In vivo animal experiments have shown that this can be achieved by developing vaccines that stimulate immunological tolerance to atheroma antigens. Here, we present an overview of the current knowledge of the proatherogenic immune response, and we discuss the strategies currently used as immunoregulatory therapy. Lay abstract: Atherosclerosis is a chronic inflammatory disease in which the wall of the artery develops abnormalities, and can lead to serious problems, including heart attack, stroke, or even death. Scientific evidence has shown that the immune system is involved in the development and progression of atherosclerosis. Understanding the role of protective immune response in atherosclerosis provided promising opportunities to develop approaches for prevention and treatment.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088http://orcid.org/0000-0002-9200-5698https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000283088juanc.hernandezl@campusucc.edu.cohttps://scholar.google.com/citations?user=fo79p5QAAAAJ&hl=e

    Complete inhibition of extranodal dissemination of lymphoma by edelfosine-loaded lipid nanoparticles

    Get PDF
    [Background]: Lipid nanoparticles (LNs) made of synthetic lipids Compritol® 888 ATO and Precirol® ATO 5 were developed with an average size of 110.4 ± 2.1 and 103.1 ± 2.9 nm, and an encapsulation efficiency above 85% for both type of lipids. These LNs decrease the hemolytic toxicity of the drug by 90%. [Materials & methods]: Pharmacokinetic and biodistribution profiles of the drug were studied after intravenous and oral administration of edelfosine-containing LNs. [Results]: This provided an increase in relative oral bioavailability of 1500% after a single oral administration of drug-loaded LNs, maintaining edelfosine plasma levels over 7 days in contrast to a single oral administration of edelfosine solution, which presented a relative oral bioavailability of 10%. Moreover, edelfosine-loaded LNs showed a high accumulation of the drug in lymph nodes and resulted in slower tumor growth than the free drug in a murine lymphoma xenograft model, as well as potent extranodal dissemination inhibition. Original submitted 5 April 2011; Revised submitted 5 July 201. © 2012 Future Medicine Ltd.Peer Reviewe
    corecore