147 research outputs found

    The TeleTriageTeam, Offering Continuity of Personalized Care Through Telemedicine:Development and Evaluation

    Get PDF
    BACKGROUND: The COVID-19 pandemic taught us how to rethink care delivery. It catalyzed creative solutions to amplify the potential of personnel and facilities. This paper presents and evaluates a promptly introduced triaging solution that evolved into a tool to tackle the ever-growing waiting lists at an academic ophthalmology department, the TeleTriageTeam (TTT). A team of undergraduate optometry students, tutor optometrists, and ophthalmologists collaborate to maintain continuity of eye care. In this ongoing project, we combine innovative interprofessional task allocation, teaching, and remote care delivery.OBJECTIVE: In this paper, we described a novel approach, the TTT; reported its clinical effectiveness and impact on waiting lists; and discussed its transformation to a sustainable method for delivering remote eye care.METHODS: Real-world clinical data of all patients assessed by the TTT between April 16, 2020, and December 31, 2021, are covered in this paper. Business data on waiting lists and patient portal access were collected from the capacity management team and IT department of our hospital. Interim analyses were performed at different time points during the project, and this study presents a synthesis of these analyses.RESULTS: A total of 3658 cases were assessed by the TTT. For approximately half (1789/3658, 48.91%) of the assessed cases, an alternative to a conventional face-to-face consultation was found. The waiting lists that had built up during the first months of the pandemic diminished and have been stable since the end of 2020, even during periods of imposed lockdown restrictions and reduced capacity. Patient portal access decreased with age, and patients who were invited to perform a remote, web-based eye test at home were on average younger than patients who were not invited.CONCLUSIONS: Our promptly introduced approach to remotely review cases and prioritize urgency has been successful in maintaining continuity of care and education throughout the pandemic and has evolved into a telemedicine service that is of great interest for future purposes, especially in the routine follow-up of patients with chronic diseases. TTT appears to be a potentially preferred practice in other clinics and medical specialties. The paradox is that judicious clinical decision-making based on remotely collected data is possible, only if we as caregivers are willing to change our routines and cognitions regarding face-to-face care delivery.</p

    Introducing e-health technology to routine cataract care:patient perspectives on web-based eye test for postoperative telemonitoring

    Get PDF
    Purpose:To explore cataract patients' experiences with an e-health tool for self-assessing visual function (ie, a web-based eye test), and to formulate recommendations for its successful adoption in routine cataract care.Setting:Clinics in the Netherlands, Germany, and Austria.Design:Mixed-methods study.Methods:22 participants were included in this study; in-depth interviews were conducted with 12. Questionnaires and in-depth semi-structured interviews were conducted alongside a multicenter randomized controlled trial evaluating the validity, safety and cost-effectiveness of remote care after cataract surgery (Cataract Online Refraction Evaluation, a Randomized Controlled Trial). Results were analyzed thematically.Results:Participants reported positively about performing the web-based eye test at home. 4 overarching themes were identified in the interviews. First, participants were inventive in overcoming practical barriers encountered while conducting the test. Second, participants desired a clear presentation of test results and their meaning. Third, the ability to self-monitor visual function was appreciated. Fourth, most participants preferred to keep the option to contact their eyecare professional (ECP) postoperatively, especially when experiencing symptoms. Most would be satisfied with a phone consultation or an e-consult. Participants reported positive experiences with the web-based eye test. Barriers for successful adoption were identified, including insecurity about correctly performing the test, incomplete information on how to interpret test results, and a feeling that in-hospital assessments were superior to remote assessments.Conclusions:It is recommended to focus on building trust in remote eyecare delivery and that access to the ECP be retained when medically indicated or deemed necessary by the patient.</p

    Altered placental expression of kisspeptin and its receptor in pre-eclampsia

    Get PDF
    Kisspeptin, originally identified as metastatin, important in preventing cancer metastasis, has more recently been shown to be important in pregnancy. Roles indicated for kisspeptin in pregnancy include regulating trophoblast invasion and migration during placentation. The pregnancy-specific disorder pre-eclampsia (PE) is now accepted to begin with inadequate trophoblast invasion and the current study therefore sets out to characterise placental expression of both kisspeptin (KISS1) and its receptor (KISS1R) throughout pregnancy and in PE. Placental tissue was obtained from women undergoing elective surgical termination of early pregnancy (n=10) and from women following Caesarean section at term in normal pregnancy (n=10) and with PE (n=10). Immunohistochemistry of paraffin embedded sections and western immunoblotting were performed to assess protein localisation and expression. Quantitative real-time PCR was carried out to evaluate mRNA expression of both KISS1 and KISS1R. Protein and mRNA expression was found to mirror each other with KISS1 expression found to be reduced in PE compared with that in normal term pregnancy. Interestingly, KISS1R expression at both the mRNA and protein levels was found to be increased in PE compared with that in normal term pregnancy. The current findings of increased KISS1R expression may represent a mechanism by which functional activity of KISS1 is higher in PE than in normal pregnancy. Higher levels of activity of KISS1R may be involved in inhibition of trophoblast invasion and angiogenesis, which are associated with PE

    Nationwide epidemiological approach to identify associations between keratoconus and immune-mediated diseases

    Get PDF
    Background: The aetiology of keratoconus (KC) remains poorly understood. KC has typically been described as a non-inflammatory disorder of the cornea. Nonetheless, there is increasing presumptive evidence for the role of the immune system in the pathogenesis of KC. Aim: To evaluate the association between KC and immune-mediated diseases on a population level. We hypothesise that KC is immune-mediated rather than a predominantly degenerative disease. Methods: Data were obtained from the largest health insurance provider in the Netherlands. Dutch residents are obligatorily insured. The data contained all medical claims and sociodemographic characteristics from all KC patients plus all those data from a 1:6 age-matched and sex-matched control group. The primary outcome was the association between KC and immune-mediated diseases, as assessed by conditional logistic regression. Results: Based on our analysis of 2051 KC cases and 12 306 matched controls, we identified novel associations between KC and Hashimoto's thyroiditis (OR=2.89; 95% CI: 1.41 to 5.94) and inflammatory skin conditions (OR=2.20; 95% CI: 1.37 to 3.53). We confirmed known associations between KC and atopic conditions, including allergic rash (OR=3.00; 95% CI: 1.03 to 8.79), asthma and bronchial hyperresponsiveness (OR=2.51; 95% CI: 1.63 to 3.84), and allergic rhinitis (OR=2.20; 95% CI: 1.39 to 3.49). Conclusion: Keratoconus appears positively associated with multiple immune-mediated diseases, which provides a population-based argument that systemic inflammatory responses may influence its onset. The identification of these particular diseases might shed light on potential comparable pathways through which this proinflammatory state is achieved, paving the way for pharmacological treatment strategies

    Intradialytic protein ingestion and exercise do not compromise uremic toxin removal throughout hemodialysis

    Get PDF
    Objective Dietary protein and physical activity interventions are increasingly implemented during hemodialysis to support muscle maintenance in patients with end-stage renal disease (ESRD). Although muscle maintenance is important, adequate removal of uremic toxins throughout hemodialysis is the primary concern for patients. It remains to be established whether intradialytic protein ingestion and/or exercise modulate uremic toxin removal during hemodialysis. Methods We recruited 10 patients with ESRD (age: 65 ± 16 y, BMI: 24.2 ± 4.8 kg/m2) on chronic hemodialysis treatment to participate in this randomized cross-over trial. During hemodialysis, patients were assigned to ingest 40 g protein or a nonprotein placebo both at rest (protein [PRO] and placebo [PLA], respectively) and following 30 min of exercise (PRO + exercise [EX] and PLA + EX, respectively). Blood and spent dialysate samples were collected throughout hemodialysis to assess reduction ratios and removal of urea, creatinine, phosphate, cystatin C, and indoxyl sulfate. Results The reduction ratios of urea and indoxyl sulfate were higher during PLA (76 ± 6% and 46 ± 9%, respectively) and PLA + EX interventions (77 ± 5% and 45 ± 10%, respectively) when compared to PRO (72 ± 4% and 40 ± 8%, respectively) and PRO + EX interventions (73 ± 4% and 43 ± 7%, respectively; protein effect: P = .001 and P = .023, respectively; exercise effect: P = .25 and P = .52, respectively). Nonetheless, protein ingestion resulted in greater urea removal (P = .046) during hemodialysis. Reduction ratios and removal of creatinine, phosphate, and cystatin C during hemodialysis did not differ following intradialytic protein ingestion or exercise (protein effect: P > .05; exercise effect: P>.05). Urea, creatinine, and phosphate removal were greater throughout the period with intradialytic exercise during PLA + EX and PRO + EX interventions when compared to the same period during PLA and PRO interventions (exercise effect: P = .034, P = .039, and P = .022, respectively). Conclusion The removal of uremic toxins is not compromised by protein feeding and/or exercise implementation during hemodialysis in patients with ESRD

    Protein synthesis rates of muscle, tendon, ligament, cartilage, and bone tissue in vivo in humans

    Get PDF
    Skeletal muscle plasticity is reflected by a dynamic balance between protein synthesis and breakdown, with basal muscle tissue protein synthesis rates ranging between 0.02 and 0.09%/h. Though it is evident that other musculoskeletal tissues should also express some level of plasticity, data on protein synthesis rates of most of these tissues in vivo in humans is limited. Six otherwise healthy patients (62±3 y), scheduled to undergo unilateral total knee arthroplasty, were subjected to primed continuous intravenous infusions with L-[ring-13C6]-Phenylalanine throughout the surgical procedure. Tissue samples obtained during surgery included muscle, tendon, cruciate ligaments, cartilage, bone, menisci, fat, and synovium. Tissue-specific fractional protein synthesis rates (%/h) were assessed by measuring the incorporation of L-[ring-13C6]-Phenylalanine in tissue protein and were compared with muscle tissue protein synthesis rates using a paired t test. Tendon, bone, cartilage, Hoffa’s fat pad, anterior and posterior cruciate ligament, and menisci tissue protein synthesis rates averaged 0.06±0.01, 0.03±0.01, 0.04±0.01, 0.11±0.03, 0.07±0.02, 0.04±0.01, and 0.04±0.01%/h, respectively, and did not significantly differ from skeletal muscle protein synthesis rates (0.04±0.01%/h; P>0.05). Synovium derived protein (0.13±0.03%/h) and intercondylar notch bone tissue protein synthesis rates (0.03±0.01%/h) were respectively higher and lower compared to skeletal muscle protein synthesis rates (P<0.05 and P<0.01, respectively). Basal protein synthesis rates in various musculoskeletal tissues are within the same range of skeletal muscle protein synthesis rates, with fractional muscle, tendon, bone, cartilage, ligament, menisci, fat, and synovium protein synthesis rates ranging between 0.02 and 0.13% per hour in vivo in humans

    Potato protein ingestion increases muscle protein synthesis rates at rest and during recovery from exercise in humans

    Get PDF
    Introduction Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. Methods In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-13C6]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. Results Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h−1 and from 0.021% ± 0.014% to 0.050% ± 0.012%·h−1, respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h−1 after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). Conclusions Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein

    Ingestion of an ample amount of meat substitute based on a lysine-enriched,plant-based protein blend stimulates postprandial muscle proteinsynthesis to a similar extent as an isonitrogenous amount of chickenin healthy, young men

    Get PDF
    Plant-based proteins are considered to be less effective in their capacity to stimulate muscle protein synthesis when compared with animal-based protein sources, likely due to differences in amino acid contents. We compared the postprandial muscle protein synthetic response following the ingestion of a lysine-enriched plant-based protein product with an isonitrogenous amount of chicken. Twenty-four men (age 24 ± 5 years; BMI 22·9 ± 2·6 kg·m−2) participated in this parallel, double-blind, randomised controlled trial and consumed 40 g of protein as a lysine-enriched wheat and chickpea protein product (Plant, n 12) or chicken breast fillet (Chicken, n 12). Primed, continuous intravenous L-(ring-13C6)-phenylalanine infusions were applied while repeated blood and muscle samples were collected over a 5-h postprandial period to assess plasma amino acid responses, muscle protein synthesis rates and muscle anabolic signalling responses. Postprandial plasma leucine and essential amino acid concentrations were higher following Chicken (P < 0·001), while plasma lysine concentrations were higher throughout in Plant (P < 0·001). Total plasma amino acid concentrations did not differ between interventions (P = 0·181). Ingestion of both Plant and Chicken increased muscle protein synthesis rates from post-absorptive: 0·031 ± 0·011 and 0·031 ± 0·013 to postprandial: 0·046 ± 0·010 and 0·055 ± 0·015 % h−1, respectively (P-time < 0·001), with no differences between Plant and Chicken (time x treatment P = 0·068). Ingestion of 40 g of protein in the form of a lysine-enriched plant-based protein product increases muscle protein synthesis rates to a similar extent as an isonitrogenous amount of chicken in healthy, young men. Plant-based protein products sold as meat replacers may be as effective as animal-based protein sources to stimulate postprandial muscle protein synthesis rates in healthy, young individuals

    Potato Protein Ingestion Increases Muscle Protein Synthesis Rates at Rest and during Recovery from Exercise in Humans

    Get PDF
    INTRODUCTION: Plant-derived proteins have received considerable attention as an alternative to animal-based proteins and are now frequently used in both plant-based diets and sports nutrition products. However, little information is available on the anabolic properties of potato-derived protein. This study compares muscle protein synthesis rates after the ingestion of 30 g potato protein versus 30 g milk protein at rest and during recovery from a single bout of resistance exercise in healthy, young males. METHODS: In a randomized, double-blind, parallel-group design, 24 healthy young males (24 ± 4 yr) received primed continuous l-[ring-(13)C(6)]-phenylalanine infusions while ingesting 30 g potato-derived protein or 30 g milk protein after a single bout of unilateral resistance exercise. Blood and muscle biopsies were collected for 5 h after protein ingestion to assess postprandial plasma amino acid profiles and mixed muscle protein synthesis rates at rest and during recovery from exercise. RESULTS: Ingestion of both potato and milk protein increased mixed muscle protein synthesis rates when compared with basal postabsorptive values (from 0.020% ± 0.011% to 0.053% ± 0.017%·h(−1) and from 0.021% ± 0.014% to 0.050% ± 0.012%·h(−1), respectively; P < 0.001), with no differences between treatments (P = 0.54). In the exercised leg, mixed muscle protein synthesis rates increased to 0.069% ± 0.019% and 0.064% ± 0.015%·h(−1) after ingesting potato and milk protein, respectively (P < 0.001), with no differences between treatments (P = 0.52). The muscle protein synthetic response was greater in the exercised compared with the resting leg (P < 0.05). CONCLUSIONS: Ingestion of 30 g potato protein concentrate increases muscle protein synthesis rates at rest and during recovery from exercise in healthy, young males. Muscle protein synthesis rates after the ingestion of 30 g potato protein do not differ from rates observed after ingesting an equivalent amount of milk protein
    corecore