1,574 research outputs found

    Debye mass and heavy quark potential in a PNJL quark plasma

    Full text link
    We calculate the Debye mass for the screening of the heavy quark potential in a plasma of massless quarks coupled to the temporal gluon background governed by the Polyakov loop potential within the PNJL model in RPA approximation. We give a physical motivation for a recent phenomenological fit of lattice data by applying the calculated Debye mass with its suppression in the confined phase due to the Polyakov-loop to a description of the temperature dependence of the singlet free energy for QCD with a heavy quark pair at infinite separation. We compare the result to lattice data.Comment: 6 pages, 1 figure, contribution to Proceedings of the 6th International Conference on "Critical Point and Onset of Deconfinement", to appear in Phys. At. Nucl., vol. 7

    Limits on the Mass, Velocity and Orbit of PSR J1933−-6211

    Full text link
    We present a high-precision timing analysis of PSR J1933−-6211, a millisecond pulsar (MSP) with a 3.5-ms spin period and a white dwarf (WD) companion, using data from the Parkes radio telescope. Since we have accurately measured the polarization properties of this pulsar we have applied the matrix template matching approach in which the times of arrival are measured using full polarimetric information. We achieved a weighted root-mean-square timing residuals (rms) of the timing residuals of 1.23 μs\rm \mu s, 15.5%\% improvement compared to the total intensity timing analysis. After studying the scintillation properties of this pulsar we put constraints on the inclination angle of the system. Based on these measurements and on χ2\chi^2 mapping we put a 2-σ\sigma upper limit on the companion mass (0.44 M⊙_\odot). Since this mass limit cannot reveal the nature of the companion we further investigate the possibility of the companion to be a He WD. Applying the orbital period-mass relation for such WDs, we conclude that the mass of a He WD companion would be about 0.26±\pm0.01 M⊙_\odot which, combined with the measured mass function and orbital inclination limits, would lead to a light pulsar mass ⩽\leqslant 1.0 M⊙_\odot. This result seems unlikely based on current neutron star formation models and we therefore conclude that PSR J1933−-6211 most likely has a CO WD companion, which allows for a solution with a more massive pulsar

    A New 5 Flavour NLO Analysis and Parametrizations of Parton Distributions of the Real Photon

    Full text link
    New, radiatively generated, NLO quark (u,d,s,c,b) and gluon densities in a real, unpolarized photon are presented. We perform three global fits, based on the NLO DGLAP evolution equations for Q^2>1 GeV^2, to all the available structure function F_2^gamma(x,Q^2) data. As in our previous LO analysis we utilize two theoretical approaches. Two models, denoted as FFNS_{CJK}1 & 2 NLO, adopt the so-called Fixed Flavour-Number Scheme for calculation of the heavy-quark contributions to F_2^gamma(x,Q^2), the CJK NLO model applies the ACOT(chi) scheme. We examine the results of our fits by a comparison with the LEP data for the Q^2 dependence of the F_2^gamma, averaged over various x-regions, and the F_2,c^gamma. Grid parametrizations of the parton densities for all fits are provided.Comment: 49 pages, 27 postscript figures; FORTRAN programs available at http://www.fuw.edu.pl/~pjank/param.htm

    Development and presentation of an objective risk stratification tool for healthcare workers when dealing with the COVID-19 pandemic in the UK: risk modelling based on hospitalisation and mortality statistics compared with epidemiological data

    Get PDF
    This paper presents a tool for objective risk stratification of doctors and healthcare professionals during the COVID-19 pandemic, without requiring disclosure of information that an individual may not wish to share during the risk assessment process. This tool is freely available through the British Medical Association website and is widely used in the National Health Service and other external organisation

    Humility as a predictor of eudaimonic flourishing among adult clients: mediator effects for self-regulation

    Full text link
    The scientific literature on humility has grown rapidly over the past decade with hundreds of studies now available, yet very few studies have investigated humility in clinical settings. Some clinicians might question the relevance of humility to key mental health and well being outcomes for clients, and there have been some discrepant findings on humi lity and well being in non clinical settings. The present cross sectional study tested an emotion regulation model of humility and well being drawing on attachment and family systems theories and research in positive psychology in a sample of Adult outpati ent clients (N=147) at a community mental health clinic in the United States. Dependent variables included: (a) Eudaimonic well being or flourishing (Mental Health Continuum Short Form; Lamers et al., 2011), (b) life satisfaction problems (Treatment Out come Package/TOP; Krauss et al., 2005), (c) work functioning problems (TOP), and (d) general health (TOP). Humility was operationalized using the General Humility Scale (Hill et al., 2015), a multi dimensional measure previously used in the same clinical c ontext (Paine et al., 2018). Results found humility was significantly related to each outcome in predicted directions with mediator effects for emotion regulation. Findings are discussed in terms of future research (particularly further validation of clinical measures of virtue and flourishing) and clinical practice.Published versio

    Towards a standard jet definition

    Get PDF
    In a simulated measurement of the WW-boson mass, evaluation of Fisher's information shows the optimal jet definition to be physically equivalent to the kTk_\mathrm{T} algorithm while being much faster at large multiplicities.Comment: version to appear in Phys. Rev. Lett., 4 page

    The UTMOST pulsar timing programme I: overview and first results

    Full text link
    We present an overview and the first results from a large-scale pulsar timing programme that is part of the UTMOST project at the refurbished Molonglo Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We currently observe more than 400 mainly bright southern radio pulsars with up to daily cadences. For 205 (8 in binaries, 4 millisecond pulsars) we publish updated timing models, together with their flux densities, flux density variability, and pulse widths at 843 MHz, derived from observations spanning between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve the precision of the rotational and astrometric parameters for 123 pulsars, for 47 by at least an order of magnitude. The time spans between our measurements and those in the literature are up to 48 yr, which allows us to investigate their long-term spin-down history and to estimate proper motions for 60 pulsars, of which 24 are newly determined and most are major improvements. The results are consistent with interferometric measurements from the literature. A model with two Gaussian components centred at 139 and 463 km s−1463~\text{km} \: \text{s}^{-1} fits the transverse velocity distribution best. The pulse duty cycle distributions at 50 and 10 per cent maximum are best described by log-normal distributions with medians of 2.3 and 4.4 per cent, respectively. We discuss two pulsars that exhibit spin-down rate changes and drifting subpulses. Finally, we describe the autonomous observing system and the dynamic scheduler that has increased the observing efficiency by a factor of 2-3 in comparison with static scheduling.Comment: 31 pages, 14 figures, 6 tables, accepted for publication in MNRA

    The first interferometric detections of Fast Radio Bursts

    Get PDF
    We present the first interferometric detections of Fast Radio Bursts (FRBs), an enigmatic new class of astrophysical transient. In a 180-day survey of the Southern sky we discovered 3 FRBs at 843 MHz with the UTMOST array, as part of commissioning science during a major ongoing upgrade. The wide field of view of UTMOST (≈9\approx 9 deg2^{2}) is well suited to FRB searches. The primary beam is covered by 352 partially overlapping fan-beams, each of which is searched for FRBs in real time with pulse widths in the range 0.655 to 42 ms, and dispersion measures ≤\leq2000 pc cm−3^{-3}. Detections of FRBs with the UTMOST array places a lower limit on their distances of ≈104\approx 10^4 km (limit of the telescope near-field) supporting the case for an astronomical origin. Repeating FRBs at UTMOST or an FRB detected simultaneously with the Parkes radio telescope and UTMOST, would allow a few arcsec localisation, thereby providing an excellent means of identifying FRB host galaxies, if present. Up to 100 hours of follow-up for each FRB has been carried out with the UTMOST, with no repeating bursts seen. From the detected position, we present 3σ\sigma error ellipses of 15 arcsec x 8.4 deg on the sky for the point of origin for the FRBs. We estimate an all-sky FRB rate at 843 MHz above a fluence Flim\cal F_\mathrm{lim} of 11 Jy ms of ∼78\sim 78 events sky−1^{-1} d−1^{-1} at the 95 percent confidence level. The measured rate of FRBs at 843 MHz is of order two times higher than we had expected, scaling from the FRB rate at the Parkes radio telescope, assuming that FRBs have a flat spectral index and a uniform distribution in Euclidean space. We examine how this can be explained by FRBs having a steeper spectral index and/or a flatter logNN-logF\mathcal{F} distribution than expected for a Euclidean Universe.Comment: 13 pages, 8 figures, 2 table
    • …
    corecore