1,574 research outputs found
Debye mass and heavy quark potential in a PNJL quark plasma
We calculate the Debye mass for the screening of the heavy quark potential in
a plasma of massless quarks coupled to the temporal gluon background governed
by the Polyakov loop potential within the PNJL model in RPA approximation. We
give a physical motivation for a recent phenomenological fit of lattice data by
applying the calculated Debye mass with its suppression in the confined phase
due to the Polyakov-loop to a description of the temperature dependence of the
singlet free energy for QCD with a heavy quark pair at infinite separation. We
compare the result to lattice data.Comment: 6 pages, 1 figure, contribution to Proceedings of the 6th
International Conference on "Critical Point and Onset of Deconfinement", to
appear in Phys. At. Nucl., vol. 7
Limits on the Mass, Velocity and Orbit of PSR J19336211
We present a high-precision timing analysis of PSR J19336211, a
millisecond pulsar (MSP) with a 3.5-ms spin period and a white dwarf (WD)
companion, using data from the Parkes radio telescope. Since we have accurately
measured the polarization properties of this pulsar we have applied the matrix
template matching approach in which the times of arrival are measured using
full polarimetric information. We achieved a weighted root-mean-square timing
residuals (rms) of the timing residuals of 1.23 , 15.5
improvement compared to the total intensity timing analysis. After studying the
scintillation properties of this pulsar we put constraints on the inclination
angle of the system. Based on these measurements and on mapping we put
a 2- upper limit on the companion mass (0.44 M). Since this
mass limit cannot reveal the nature of the companion we further investigate the
possibility of the companion to be a He WD. Applying the orbital period-mass
relation for such WDs, we conclude that the mass of a He WD companion would be
about 0.260.01 M which, combined with the measured mass function
and orbital inclination limits, would lead to a light pulsar mass
1.0 M. This result seems unlikely based on current neutron star
formation models and we therefore conclude that PSR J19336211 most likely
has a CO WD companion, which allows for a solution with a more massive pulsar
A New 5 Flavour NLO Analysis and Parametrizations of Parton Distributions of the Real Photon
New, radiatively generated, NLO quark (u,d,s,c,b) and gluon densities in a
real, unpolarized photon are presented. We perform three global fits, based on
the NLO DGLAP evolution equations for Q^2>1 GeV^2, to all the available
structure function F_2^gamma(x,Q^2) data. As in our previous LO analysis we
utilize two theoretical approaches. Two models, denoted as FFNS_{CJK}1 & 2 NLO,
adopt the so-called Fixed Flavour-Number Scheme for calculation of the
heavy-quark contributions to F_2^gamma(x,Q^2), the CJK NLO model applies the
ACOT(chi) scheme. We examine the results of our fits by a comparison with the
LEP data for the Q^2 dependence of the F_2^gamma, averaged over various
x-regions, and the F_2,c^gamma. Grid parametrizations of the parton densities
for all fits are provided.Comment: 49 pages, 27 postscript figures; FORTRAN programs available at
http://www.fuw.edu.pl/~pjank/param.htm
Development and presentation of an objective risk stratification tool for healthcare workers when dealing with the COVID-19 pandemic in the UK: risk modelling based on hospitalisation and mortality statistics compared with epidemiological data
This paper presents a tool for objective risk stratification of doctors and healthcare professionals during the COVID-19 pandemic, without requiring disclosure of information that an individual may not wish to share during the risk assessment process. This tool is freely available through the British Medical Association website and is widely used in the National Health Service and other external organisation
Humility as a predictor of eudaimonic flourishing among adult clients: mediator effects for self-regulation
The scientific literature on humility has grown rapidly over the past decade with hundreds of studies now available, yet very few studies have investigated humility in clinical settings. Some clinicians might question the relevance of humility to key mental health and well being outcomes for clients, and there have been some discrepant findings on humi lity and well being in non clinical settings. The present cross sectional study tested an emotion regulation model of humility and well being drawing on attachment and family systems theories and research in positive psychology in a sample of Adult outpati ent clients (N=147) at a community mental health clinic in the United States. Dependent variables included: (a) Eudaimonic well being or flourishing (Mental Health Continuum Short Form; Lamers et al., 2011), (b) life satisfaction problems (Treatment Out come Package/TOP; Krauss et al., 2005), (c) work functioning problems (TOP), and (d) general health (TOP). Humility was operationalized using the General Humility Scale (Hill et al., 2015), a multi dimensional measure previously used in the same clinical c ontext (Paine et al., 2018). Results found humility was significantly related to each outcome in predicted directions with mediator effects for emotion regulation. Findings are discussed in terms of future research (particularly further validation of clinical measures of virtue and flourishing) and clinical practice.Published versio
Towards a standard jet definition
In a simulated measurement of the -boson mass, evaluation of Fisher's
information shows the optimal jet definition to be physically equivalent to the
algorithm while being much faster at large multiplicities.Comment: version to appear in Phys. Rev. Lett., 4 page
The UTMOST pulsar timing programme I: overview and first results
We present an overview and the first results from a large-scale pulsar timing
programme that is part of the UTMOST project at the refurbished Molonglo
Observatory Synthesis Radio Telescope (MOST) near Canberra, Australia. We
currently observe more than 400 mainly bright southern radio pulsars with up to
daily cadences. For 205 (8 in binaries, 4 millisecond pulsars) we publish
updated timing models, together with their flux densities, flux density
variability, and pulse widths at 843 MHz, derived from observations spanning
between 1.4 and 3 yr. In comparison with the ATNF pulsar catalogue, we improve
the precision of the rotational and astrometric parameters for 123 pulsars, for
47 by at least an order of magnitude. The time spans between our measurements
and those in the literature are up to 48 yr, which allows us to investigate
their long-term spin-down history and to estimate proper motions for 60
pulsars, of which 24 are newly determined and most are major improvements. The
results are consistent with interferometric measurements from the literature. A
model with two Gaussian components centred at 139 and fits the transverse velocity distribution best. The pulse duty
cycle distributions at 50 and 10 per cent maximum are best described by
log-normal distributions with medians of 2.3 and 4.4 per cent, respectively. We
discuss two pulsars that exhibit spin-down rate changes and drifting subpulses.
Finally, we describe the autonomous observing system and the dynamic scheduler
that has increased the observing efficiency by a factor of 2-3 in comparison
with static scheduling.Comment: 31 pages, 14 figures, 6 tables, accepted for publication in MNRA
The first interferometric detections of Fast Radio Bursts
We present the first interferometric detections of Fast Radio Bursts (FRBs),
an enigmatic new class of astrophysical transient. In a 180-day survey of the
Southern sky we discovered 3 FRBs at 843 MHz with the UTMOST array, as part of
commissioning science during a major ongoing upgrade. The wide field of view of
UTMOST ( deg) is well suited to FRB searches. The primary beam
is covered by 352 partially overlapping fan-beams, each of which is searched
for FRBs in real time with pulse widths in the range 0.655 to 42 ms, and
dispersion measures 2000 pc cm. Detections of FRBs with the UTMOST
array places a lower limit on their distances of km (limit of
the telescope near-field) supporting the case for an astronomical origin.
Repeating FRBs at UTMOST or an FRB detected simultaneously with the Parkes
radio telescope and UTMOST, would allow a few arcsec localisation, thereby
providing an excellent means of identifying FRB host galaxies, if present. Up
to 100 hours of follow-up for each FRB has been carried out with the UTMOST,
with no repeating bursts seen. From the detected position, we present 3
error ellipses of 15 arcsec x 8.4 deg on the sky for the point of origin for
the FRBs. We estimate an all-sky FRB rate at 843 MHz above a fluence of 11 Jy ms of events sky d at the 95
percent confidence level. The measured rate of FRBs at 843 MHz is of order two
times higher than we had expected, scaling from the FRB rate at the Parkes
radio telescope, assuming that FRBs have a flat spectral index and a uniform
distribution in Euclidean space. We examine how this can be explained by FRBs
having a steeper spectral index and/or a flatter log-log
distribution than expected for a Euclidean Universe.Comment: 13 pages, 8 figures, 2 table
- …