90 research outputs found

    Functionalized Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as Platform for the Targeted Multimodal Tumor Therapy

    Get PDF
    Standard cancer treatments involve surgery, radiotherapy, chemotherapy, and immunotherapy. In clinical practice, the respective drugs are applied orally or intravenously leading to their systemic circulation in the whole organism. For chemotherapeutics or immune modulatory agents, severe side effects such as immune depression or autoimmunity can occur. At the same time the intratumoral drug doses are often too low for effective cancer therapy. Since monotherapies frequently cannot cure cancer, due to their synergistic effects multimodal therapy concepts are applied to enhance treatment efficacy. The targeted delivery of drugs to the tumor by employment of functionalized nanoparticles might be a promising solution to overcome these challenges. For multimodal therapy concepts and individualized patient care nanoparticle platforms can be functionalized with compounds from various therapeutic classes (e.g. radiosensitizers, phototoxic drugs, chemotherapeutics, immune modulators). Superparamagnetic iron oxide nanoparticles (SPIONs) as drug transporters can add further functionalities, such as guidance or heating by external magnetic fields (Magnetic Drug Targeting or Magnetic Hyperthermia), and imaging-controlled therapy (Magnetic Resonance Imaging)

    Sol–gel derived B₂O₃–CaO borate bioactive glasses with hemostatic, antibacterial and pro-angiogenic activities

    Get PDF
    Sol–gel borate bioactive glasses (BGs) are promising ion-releasing biomaterials for wound healing applications. Here, we report the synthesis of a series of binary B₂O₃–CaO borate BGs (CaO ranging from 50 to 90 mol%) using a sol–gel-based method. The influence of CaO content in B₂O₃–CaO borate BG on morphology, structure and ion release behavior was investigated in detail. Reduced dissolution (ion release) and crystallization could be observed in borate BGs when CaO content increased, while the morphology was not significantly altered by increasing CaO content. Our results evidenced that the ion release behavior of borate BGs could be tailored by tuning the B₂O₃/CaO molar ratio. We also evaluated the in vitro cytotoxicity, hemostatic, antibacterial and angiogenic activities of borate BGs. Cytocompatibility was validated for all borate BGs. However, borate BGs exhibited composition-dependent hemostatic, antibacterial and angiogenic activities. Generally, higher contents of Ca in borate BGs facilitated hemostatic activity, while higher contents of B₂O₃ were beneficial for pro-angiogenic activity. The synthesized sol–gel-derived borate BGs are promising materials for developing advanced wound healing dressings, given their fast ion release behavior and favorable hemostatic, antibacterial and angiogenic activities

    Hemocompatibility and Biomedical Potential of Poly(Gallic Acid) Coated Iron Oxide Nanoparticles for Theranostic Use

    Get PDF
    Polyacid covered core-shell iron oxide nanoparticles were designed for potential use in biomedicine with special attention to theranostics - magnetic resonance imaging (MRI), magnetic hyperthermia and magnetic drug targeting. The magnetite nanoparticles coated with a gallic acid shell polymerized in situ on the nanoparticle surface (PGA@MNPs) were tested for hemocompatibility in blood, sedimentation rate, blood smear and blood cell viability experiments and for antioxidant capacity in Jurkat cells in the presence of H2O2 as reactive oxygen species. No signs of interaction of the nanoparticles with whole blood cells were found. In addition, the PGA@MNPs reduced significantly the oxidative stress mediated by H2O2 supporting earlier findings of MTT tests, namely, the improvement of cell viability in their presence. The in vitro tests revealed that PGA@MNPs are not only biocompatible but also bioactive. Preliminary experiments revealed that the nanoparticles are especially efficient MRI and magnetic hyperthermia agents. The r2 relaxivity was found to be one of the highest among published values (387 mM-1s-1) and they possess a relatively significant specific absorption rate (SAR) value of 11 W/g magnetite

    Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) are promising tools for the treatment of different diseases. Their magnetic properties enable therapies involving magnetic drug targeting (MDT), hyperthermia or imaging. Depending on the intended treatment, specific characteristics of SPIONs are required. While particles used for imaging should circulate for extended periods of time in the vascular system, SPIONs intended for MDT or hyperthermia should be accumulated in the target area to come into close proximity of, or to be incorporated into, specific tumor cells. In this study, we determined the impact of several accurately characterized SPION types varying in size, zeta potential and surface coating on various human breast cancer cell lines and endothelial cells to identify the most suitable particle for future breast cancer therapy. We analyzed cellular SPION uptake, magnetic properties, cell proliferation and toxicity using atomic emission spectroscopy, magnetic susceptometry, flow cytometry and microscopy. The results demonstrated that treatment with dextran-coated SPIONs (SPIONDex) and lauric acid-coated SPIONs (SPIONLA) with an additional protein corona formed by human serum albumin (SPIONLA-HSA) resulted in very moderate particle uptake and low cytotoxicity, whereas SPIONLA had in part much stronger effects on cellular uptake and cellular toxicity. In summary, our data show significant dose-dependent and particle type-related response differences between various breast cancer and endothelial cells, indicating the utility of these particle types for distinct medical applications

    Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells

    Get PDF
    Neutrophil extracellular traps (NETs) are fibers of extracellular DNA released from neutrophils due to overwhelming phagocytic stimuli. The function of NETs is to trap and kill microbes to avoid spreading of potential pathogens. NETs are formed after encounter with various gram-positive and -negative bacteria but also in response to mediators causing sterile inflammation like interleukin-8 (IL-8), tumor necrosis factor (TNF), and phorbol myristate acetate (PMA). Here we show the formation of NETs (NETting) in response to monosodium urate (MSU) crystals as further model for sterile inflammation. We identified monocytes, neutrophils, and eosinophils as MSU phagocytosing cells. Basophils did not take up the crystals, instead they upregulated their activation marker CD203c after contact with MSU. Nevertheless, MSU crystals induced extracellular trap formation also in basophils, like in eosinophils and neutrophils, which phagocytose the crystals. In contrast, monocytes do not form NETs despite uptake of the MSU crystals. In contrast to the canonical stimuli like bacteria and PMA, MSU-induced NETosis was not abrogated by plasma. Our data show that MSU crystals induce extracellular DNA trap formation in all three granulocytes lineages (NETs, EETs, and BETs) but not in monocytes, and DNA externalization does not necessitate the uptake of the crystals

    Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Get PDF
    Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA;SEONLA-BSA),or with dextran (SEONDEX). Both micronuclei testing and the detection of H2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system

    Functionalization Of T Lymphocytes With Citrate-Coated Superparamagnetic Iron Oxide Nanoparticles For Magnetically Controlled Immune Therapy

    Get PDF
    Purpose: Immune activation with T cell tumor infiltration is beneficial for the prognosis of patients suffering from solid cancer. Depending on their immune status, solid tumors can be immunologically classified into three groups: “hot” tumors are infiltrated with T lymphocytes, “cold” tumors are not infiltrated and “immune excluded” tumors are only infiltrated in the peripheral tumor tissue. Checkpoint inhibitors provide new therapeutic options for “hot” tumors by triggering the immune response of T cells. In order to enable this for cold tumors as well, T cells must be enriched in the tumor. Therefore, we use the principle of magnetic targeting to guide T cells loaded with citrate-coated superparamagnetic iron oxide nanoparticles (SPIONCitrate) to the tumor by an externally applied magnetic field. Methods: SPIONCitrate were produced by alkaline coprecipitation of iron(II) and iron(III) chloride and in situ coating with sodium citrate. The concentration-dependent cytocompatibility of the particles was determined by flow cytometry and blood stability assays. Atomic emission spectroscopy was used for the quantification of the particle uptake into T lymphocytes. The attractability of the loaded cells was observed by live-cell imaging in the presence of an externally applied magnetic field. Results: SPIONCitrate displayed good cytocompatibility to T cells and did not show any sign of aggregation in blood. Finally, SPIONCitrate-loaded T cells were strongly attracted by a small external magnet. Conclusion: T cells can be “magnetized” by incorporation of SPIONCitrate for magnetic targeting. The production of the particle-cell hybrid system is straightforward, as the loading process only requires basic laboratory devices and the loading efficiency is sufficient for cells being magnetically controllable. For these reasons, SPIONCitrate are potential suitable candidates for magnetic T cell targeting
    corecore