1,983 research outputs found

    Substrate Adhesion of a Nongrafted Flexible Polymer in a Cavity

    Full text link
    In a contact density chain-growth study we investigate the solubility-temperature pseudo-phase diagram of a lattice polymer in a cavity with an attractive surface. In addition to the main phases of adsorbed and desorbed conformations we find numerous subphases of collapsed and expanded structures.Comment: 20 pages, 6 figure

    Properties of phase transitions of higher order

    Full text link
    There is only limited experimental evidence for the existence in nature of phase transitions of Ehrenfest order greater than two. However, there is no physical reason for their non-existence, and such transitions certainly exist in a number of theoretical models in statistical physics and lattice field theory. Here, higher-order transitions are analysed through the medium of partition function zeros. Results concerning the distributions of zeros are derived as are scaling relations between some of the critical exponents.Comment: 6 pages, poster presented at Lattice 2005 (Spin and Higgs), Trinity College Dubli

    Formed platelet combustor liner construction feasibility, phase A

    Get PDF
    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase A - feasibility study and technology development; (2) phase B - sub-scale fabrication feasibility; and (3) phase C - large scale fabrication validation. This report covers the Phase A activities, which began in December of 1988

    Open boundary conditions in stochastic transport processes with pair-factorized steady states

    Get PDF
    Using numerical methods we discuss the effects of open boundary conditions on condensation phenomena in the zero-range process (ZRP) and transport processes with pair-factorized steady states (PFSS), an extended model of the ZRP with nearest-neighbor interaction. For the zero-range process we compare to analytical results in the literature with respect to criticality and condensation. For the extended model we find a similar phase structure, but observe supercritical phases with droplet formation for strong boundary drives.Comment: conference contribution for the 27th Annual CSP Workshop on "Recent Developments in Computer Simulation Studies in Condensed Matter Physics", CSP 2014 5 pages, 5 figure

    Multicanonical Study of Coarse-Grained Off-Lattice Models for Folding Heteropolymers

    Full text link
    We have performed multicanonical simulations of hydrophobic-hydrophilic heteropolymers with two simple effective, coarse-grained off-lattice models to study the influence of specific interactions in the models on conformational transitions of selected sequences with 20 monomers. Another aspect of the investigation was the comparison with the purely hydrophobic homopolymer and the study of general conformational properties induced by the "disorder" in the sequence of a heteropolymer. Furthermore, we applied an optimization algorithm to sequences with up to 55 monomers and compared the global-energy minimum found with lowest-energy states identified within the multicanonical simulation. This was used to find out how reliable the multicanonical method samples the free-energy landscape, in particular for low temperatures.Comment: 11 pages, RevTeX, 10 Postscript figures, Author Information under http://www.physik.uni-leipzig.de/index.php?id=2

    Unexpected Spin-Off from Quantum Gravity

    Full text link
    We propose a novel way of investigating the universal properties of spin systems by coupling them to an ensemble of causal dynamically triangulated lattices, instead of studying them on a fixed regular or random lattice. Somewhat surprisingly, graph-counting methods to extract high- or low-temperature series expansions can be adapted to this case. For the two-dimensional Ising model, we present evidence that this ameliorates the singularity structure of thermodynamic functions in the complex plane, and improves the convergence of the power series.Comment: 10 pages, 4 figures; final, slightly amended version, to appear in Physica

    Error estimation and reduction with cross correlations

    Full text link
    Besides the well-known effect of autocorrelations in time series of Monte Carlo simulation data resulting from the underlying Markov process, using the same data pool for computing various estimates entails additional cross correlations. This effect, if not properly taken into account, leads to systematically wrong error estimates for combined quantities. Using a straightforward recipe of data analysis employing the jackknife or similar resampling techniques, such problems can be avoided. In addition, a covariance analysis allows for the formulation of optimal estimators with often significantly reduced variance as compared to more conventional averages.Comment: 16 pages, RevTEX4, 4 figures, 6 tables, published versio

    Application of Multicanonical Multigrid Monte Carlo Method to the Two-Dimensional ϕ4\phi^4-Model: Autocorrelations and Interface Tension

    Get PDF
    We discuss the recently proposed multicanonical multigrid Monte Carlo method and apply it to the scalar ϕ4\phi^4-model on a square lattice. To investigate the performance of the new algorithm at the field-driven first-order phase transitions between the two ordered phases we carefully analyze the autocorrelations of the Monte Carlo process. Compared with standard multicanonical simulations a real-time improvement of about one order of magnitude is established. The interface tension between the two ordered phases is extracted from high-statistics histograms of the magnetization applying histogram reweighting techniques.Comment: 49 pp. Latex incl. 14 figures (Fig.7 not included, sorry) as uuencoded compressed tar fil

    2D Potts Model Correlation Lengths: Numerical Evidence for ξo=ξd\xi_o = \xi_d at βt\beta_t

    Full text link
    We have studied spin-spin correlation functions in the ordered phase of the two-dimensional qq-state Potts model with q=10q=10, 15, and 20 at the first-order transition point βt\beta_t. Through extensive Monte Carlo simulations we obtain strong numerical evidence that the correlation length in the ordered phase agrees with the exactly known and recently numerically confirmed correlation length in the disordered phase: ξo(βt)=ξd(βt)\xi_o(\beta_t) = \xi_d(\beta_t). As a byproduct we find the energy moments in the ordered phase at βt\beta_t in very good agreement with a recent large qq-expansion.Comment: 11 pages, PostScript. To appear in Europhys. Lett. (September 1995). See also http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm

    Multicanonical Multigrid Monte Carlo

    Full text link
    To further improve the performance of Monte Carlo simulations of first-order phase transitions we propose to combine the multicanonical approach with multigrid techniques. We report tests of this proposition for the dd-dimensional Φ4\Phi^4 field theory in two different situations. First, we study quantum tunneling for d=1d = 1 in the continuum limit, and second, we investigate first-order phase transitions for d=2d = 2 in the infinite volume limit. Compared with standard multicanonical simulations we obtain improvement factors of several resp. of about one order of magnitude.Comment: 12 pages LaTex, 1 PS figure appended. FU-Berlin preprint FUB-HEP 9/9
    corecore