25 research outputs found

    Periodical honey bee colony losses in Germany: preliminary results from a four years monitoring project

    Get PDF
    contribution to session V Honey bee poisoning incidents and monitoring schemesWithin the framework of the German Bee Monitoring Project winter losses of bee colonies were evaluated from the database of 120 beekeepers and 1200 bee colonies by assessing the following parameters: data on the apiary (site, nuclei, movement of colonies, Varroa treatment), strength of the colonies in autumn and spring, honey yields, residues in bee bread (stored pollen), bee disease analysis.During the last four years the winter losses of the monitoring beekeepers were between 8 and 16% and showed regional differences. The loss rates were clearly lower than those of non-monitoring beekeepers.In 215 bee bread samples analysed with a sensitive multi-method, more than 55 active ingredients were found. Most active ingredients were found in traces but often in combinations. Primarily fungicides, varroacides and herbicides were found. Clothianidin was not found in any sample. Imidacloprid was found in one sample at the limit of detection. 4400 data sets were statistically analysed for the identification of triggers with negative influence on overwintering. The winter losses were significantly correlated with Varroa infestations and virus infections in autumn. It was concluded that no acute effects on honey bees have to be expected on the basis of the evaluated residue data. For testing potential sublethal or long term effects a useful test design has to be developed. The project will be continued in 2009.Keywords: German Bee Monitoring Project, colony losses, Apis mellifera, overwinterin

    Epac as a novel effector of airway smooth muscle relaxation

    Get PDF
    Dysfunctional regulation of airway smooth muscle tone is a feature of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Airway smooth muscle contraction is directly associated with changes in the phosphorylation of myosin light chain (MLC), which is increased by Rho and decreased by Rac. Although cyclic adenosine monophosphate (cAMP)-elevating agents are believed to relieve bronchoconstriction mainly via activation of protein kinase A (PKA), here we addressed the role of the novel cAMP-mediated exchange protein Epac in the regulation of airway smooth muscle tone. Isometric tension measurements showed that specific activation of Epac led to relaxation of guinea pig tracheal preparations pre-contracted with methacholine, independently of PKA. In airway smooth muscle cells, Epac activation reduced methacholine-induced MLC phosphorylation. Moreover, when Epac was stimulated, we observed a decreased methacholine-induced RhoA activation, measured by both stress fibre formation and pull-down assay whereas the same Epac activation prevented methacholine-induced Rac1 inhibition measured by pull-down assay. Epac-driven inhibition of both methacholine-induced muscle contraction by Toxin B-1470, and MLC phosphorylation by the Rac1-inhibitor NSC23766, were significantly attenuated, confirming the importance of Rac1 in Epac-mediated relaxation. Importantly, human airway smooth muscle tissue also expresses Epac, and Epac activation both relaxed pre-contracted human tracheal preparations and decreased MLC phosphorylation. Collectively, we show that activation of Epac relaxes airway smooth muscle by decreasing MLC phosphorylation by skewing the balance of RhoA/Rac1 activation towards Rac1. Therefore, activation of Epac may have therapeutical potential in the treatment of obstructive airway diseases

    Peripheral skin cooling during hyper-gravity: hemodynamic reactions

    Get PDF
    Introduction: Orthostatic dysregulation occurs during exposure to an increased gravitational vector and is especially common upon re-entering standard Earth gravity (1 g) after an extended period in microgravity (0 g). External peripheral skin cooling (PSC) has recently been described as a potent countermeasure against orthostatic dysregulation during heat stress and in lower body negative pressure (LBNP) studies. We therefore hypothesized that PSC may also be an effective countermeasure during hyper-gravity exposure (+Gz). Methods: To investigate this, we designed a randomized short-arm human centrifuge (SAHC) experiment (“Coolspin”) to investigate whether PSC could act as a stabilizing factor in cardiovascular function during +Gz. Artificial gravity between +1 g and +4 g was generated by a SAHC. 18 healthy male volunteers completed two runs in the SAHC. PSC was applied during one of the two runs and the other run was conducted without cooling. Each run consisted of a 10-min baseline trial followed by a +Gz step protocol marked by increasing g-forces, with each step being 3 min long. The following parameters were measured: blood pressure (BP), heart rate (HR), stroke volume (SV), total peripheral resistance (TPR), cardiac output (CO). Furthermore, a cumulative stress index for each subject was calculated. Results: +Gz led to significant changes in primary as well as in secondary outcome parameters such as HR, SV, TPR, CO, and BP. However, none of the primary outcome parameters (HR, cumulative stress-index, BP) nor secondary outcome parameters (SV, TPR, CO) showed any significant differences—whether the subject was cooled or not cooled. Systolic BP did, however, tend to be higher amongst the PSC group. Conclusion: In conclusion, PSC during +Gz did not confer any significant impact on hemodynamic activity or orthostatic stability during +Gz. This may be due to lower PSC responsiveness of the test subjects, or an insufficient level of body surface area used for cooling. Further investigations are warranted in order to comprehensively pinpoint the exact degree of PSC needed to serve as a useful countermeasure system during +Gz

    Honey bee brood ring-test: method for testing pesticide toxicity on honeybee brood in laboratory conditions

    Get PDF
    contribution to session IV Test methodology The Experimental unit of entomology (INRA, France) developed a new in vitro method to assess effects of pesticides on honey bee larvae. The method consists in rearing bee larvae in plastic cells. The larvae are fed with diet containing 50% of fresh royal jelly and 50% of an aqueous sugar and yeast extract solution, and reared in an incubator at 35 °C and 96% relative humidity. According to that method, 9 tests (7 in 2008 and 2 in 2005) were carried out in 7 laboratories and different countries. The objective of these trials was to assess the LD50 for dimethoate 48 hours after an acute exposure. The LD50 values ranged from 1.5 μg a.i./larva to 8.8 μg a.i./larva, with 2 tests with particularly high values (5.0 and 8.8 μg a.i./larva). In 7 tests, these values ranged from 1.5 μg a.i./larva to 3.1 μg a.i./larva. Such variability may be due to the colony origin, the season and larva heterogeneity at grafting. Solutions are proposed to improve the method through the continuation of the ring test. Keywords: Apis mellifera, brood, in vitro test, dimethoat

    Enhanced Spike-specific, but attenuated Nucleocapsid-specific T cell responses upon SARS-CoV-2 breakthrough versus non-breakthrough infections

    Get PDF
    SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated

    RNA recognition by human TLR8 can lead to autoimmune inflammation.

    Get PDF
    Studies on the role of the RNA receptor TLR8 in inflammation have been limited by its different function in human versus rodents. We have generated multiple lines of transgenic mice expressing different levels of human TLR8. The high copy number chimeras were unable to pass germline; developed severe inflammation targeting the pancreas, salivary glands, and joints; and the severity of the specific phenotypes closely correlated with the huTLR8 expression levels. Mice with relatively low expression levels survived and bred successfully but had increased susceptibility to collagen-induced arthritis, and the levels of huTLR8 correlated with proinflammatory cytokines in the joints of the animals. At the cellular level, huTLR8 signaling exerted a DC-intrinsic effect leading to up-regulation of co-stimulatory molecules and subsequent T cell activation. A pathogenic role for TLR8 in human diseases was suggested by its increased expression in patients with systemic arthritis and the correlation of TLR8 expression with the elevation of IL-1β levels and disease status. We found that the consequence of self-recognition via TLR8 results in a constellation of diseases, strikingly distinct from those related to TLR7 signaling, and points to specific inflammatory diseases that may benefit from inhibition of TLR8 in humans

    A Mouse Model of Pulmonary Metastasis from Spontaneous Osteosarcoma Monitored In Vivo by Luciferase Imaging

    Get PDF
    BACKGROUND: Osteosarcoma (OSA) is lethal when metastatic after chemotherapy and/or surgical treatment. Thus animal models are necessary to study the OSA metastatic spread and to validate novel therapies able to control the systemic disease. We report the development of a syngeneic (Balb/c) murine OSA model, using a cell line derived from a spontaneous murine tumor. METHODOLOGY: The tumorigenic and metastatic ability of OSA cell lines were assayed after orthotopic injection in mice distal femur. Expression profiling was carried out to characterize the parental and metastatic cell lines. Cells from metastases were propagated and engineered to express Luciferase, in order to follow metastases in vivo. PRINCIPAL FINDINGS: Luciferase bioluminescence allowed to monitor the primary tumor growth and revealed the appearance of spontaneous pulmonary metastases. In vivo assays showed that metastasis is a stable property of metastatic OSA cell lines after both propagation in culture and luciferase trasduction. When compared to parental cell line, both unmodified and genetically marked metastatic cells, showed comparable and stable differential expression of the enpp4, pfn2 and prkcd genes, already associated to the metastatic phenotype in human cancer. CONCLUSIONS: This OSA animal model faithfully recapitulates some of the most important features of the human malignancy, such as lung metastatization. Moreover, the non-invasive imaging allows monitoring the tumor progression in living mice. A great asset of this model is the metastatic phenotype, which is a stable property, not modifiable after genetic manipulation

    Effectiveness of an intensive care telehealth programme to improve process quality (ERIC): a multicentre stepped wedge cluster randomised controlled trial

    Get PDF

    Enhanced Spike-specific, but attenuated Nucleocapsid-specific T cell responses upon SARS-CoV-2 breakthrough versus non-breakthrough infections

    Get PDF
    SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated
    corecore