2,730 research outputs found

    Substrate Adhesion of a Nongrafted Flexible Polymer in a Cavity

    Full text link
    In a contact density chain-growth study we investigate the solubility-temperature pseudo-phase diagram of a lattice polymer in a cavity with an attractive surface. In addition to the main phases of adsorbed and desorbed conformations we find numerous subphases of collapsed and expanded structures.Comment: 20 pages, 6 figure

    Spacetime Approach to Phase Transitions

    Full text link
    In these notes, the application of Feynman's sum-over-paths approach to thermal phase transitions is discussed. The paradigm of such a spacetime approach to critical phenomena is provided by the high-temperature expansion of spin models. This expansion, known as the hopping expansion in the context of lattice field theory, yields a geometric description of the phase transition in these models, with the thermal critical exponents being determined by the fractal structure of the high-temperature graphs. The graphs percolate at the thermal critical point and can be studied using purely geometrical observables known from percolation theory. Besides the phase transition in spin models and in the closely related ϕ4\phi^4 theory, other transitions discussed from this perspective include Bose-Einstein condensation, and the transitions in the Higgs model and the pure U(1) gauge theory.Comment: 59 pages, 18 figures. Write-up of Ising Lectures presented at the National Academy of Sciences, Lviv, Ukraine, 2004. 2nd version: corrected typo

    Make life simple: unleash the full power of the parallel tempering algorithm

    Full text link
    We introduce a new update scheme to systematically improve the efficiency of parallel tempering simulations. We show that by adapting the number of sweeps between replica exchanges to the canonical autocorrelation time, the average round-trip time of a replica in temperature space can be significantly decreased. The temperatures are not dynamically adjusted as in previous attempts but chosen to yield a 50% exchange rate of adjacent replicas. We illustrate the new algorithm with results for the Ising model in two and the Edwards-Anderson Ising spin glass in three dimensionsComment: 4 pages, 5 figure

    Simplicial Quantum Gravity on a Randomly Triangulated Sphere

    Get PDF
    We study 2D quantum gravity on spherical topologies employing the Regge calculus approach with the dl/l measure. Instead of the normally used fixed non-regular triangulation we study random triangulations which are generated by the standard Voronoi-Delaunay procedure. For each system size we average the results over four different realizations of the random lattices. We compare both types of triangulations quantitatively and investigate how the difference in the expectation value of the squared curvature, R2R^2, for fixed and random triangulations depends on the lattice size and the surface area A. We try to measure the string susceptibility exponents through finite-size scaling analyses of the expectation value of an added R2R^2-interaction term, using two conceptually quite different procedures. The approach, where an ultraviolet cut-off is held fixed in the scaling limit, is found to be plagued with inconsistencies, as has already previously been pointed out by us. In a conceptually different approach, where the area A is held fixed, these problems are not present. We find the string susceptibility exponent γstr\gamma_{str}' in rough agreement with theoretical predictions for the sphere, whereas the estimate for γstr\gamma_{str} appears to be too negative. However, our results are hampered by the presence of severe finite-size corrections to scaling, which lead to systematic uncertainties well above our statistical errors. We feel that the present methods of estimating the string susceptibilities by finite-size scaling studies are not accurate enough to serve as testing grounds to decide about a success or failure of quantum Regge calculus.Comment: LaTex, 29 pages, including 9 figure

    Simple flexible polymers in a spherical cage

    Full text link
    We report the results of Monte Carlo simulations investigating the effect of a spherical confinement within a simple model for a flexible homopolymer. We use the parallel tempering method combined with multi-histogram reweighting analysis and multicanonical simulations to investigate thermodynamical observables over a broad range of temperatures, which enables us to describe the behavior of the polymer and to locate the freezing and collapse transitions. We find a strong effect of the spherical confinement on the location of the collapse transition, whereas the freezing transition is hardly effected.Comment: 7 pages, 4 figure

    Error estimation and reduction with cross correlations

    Full text link
    Besides the well-known effect of autocorrelations in time series of Monte Carlo simulation data resulting from the underlying Markov process, using the same data pool for computing various estimates entails additional cross correlations. This effect, if not properly taken into account, leads to systematically wrong error estimates for combined quantities. Using a straightforward recipe of data analysis employing the jackknife or similar resampling techniques, such problems can be avoided. In addition, a covariance analysis allows for the formulation of optimal estimators with often significantly reduced variance as compared to more conventional averages.Comment: 16 pages, RevTEX4, 4 figures, 6 tables, published versio
    corecore