1,022 research outputs found
2D Multi-Angle, Multi-Group Neutrino Radiation-Hydrodynamic Simulations of Postbounce Supernova Cores
We perform axisymmetric (2D) multi-angle, multi-group neutrino
radiation-hydrodynamic calculations of the postbounce phase of core-collapse
supernovae using a genuinely 2D discrete-ordinate (S_n) method. We follow the
long-term postbounce evolution of the cores of one nonrotating and one
rapidly-rotating 20-solar-mass stellar model for ~400 milliseconds from 160 ms
to ~550 ms after bounce. We present a multi-D analysis of the multi-angle
neutrino radiation fields and compare in detail with counterpart simulations
carried out in the 2D multi-group flux-limited diffusion (MGFLD) approximation
to neutrino transport. We find that 2D multi-angle transport is superior in
capturing the global and local radiation-field variations associated with
rotation-induced and SASI-induced aspherical hydrodynamic configurations. In
the rotating model, multi-angle transport predicts much larger asymptotic
neutrino flux asymmetries with pole to equator ratios of up to ~2.5, while
MGFLD tends to sphericize the radiation fields already in the optically
semi-transparent postshock regions. Along the poles, the multi-angle
calculation predicts a dramatic enhancement of the neutrino heating by up to a
factor of 3, which alters the postbounce evolution and results in greater polar
shock radii and an earlier onset of the initially rotationally weakened SASI.
In the nonrotating model, differences between multi-angle and MGFLD
calculations remain small at early times when the postshock region does not
depart significantly from spherical symmetry. At later times, however, the
growing SASI leads to large-scale asymmetries and the multi-angle calculation
predicts up to 30% higher average integral neutrino energy deposition rates
than MGFLD.Comment: 20 pages, 21 figures. Minor revisions. Accepted for publication in
ApJ. A version with high-resolution figures may be obtained from
http://www.stellarcollapse.org/papers/Ott_et_al2008_multi_angle.pd
Nucleosynthesis and Clump Formation in a Core Collapse Supernova
High-resolution two-dimensional simulations were performed for the first five
minutes of the evolution of a core collapse supernova explosion in a 15 solar
mass blue supergiant progenitor. The computations start shortly after bounce
and include neutrino-matter interactions by using a light-bulb approximation
for the neutrinos, and a treatment of the nucleosynthesis due to explosive
silicon and oxygen burning. We find that newly formed iron-group elements are
distributed throughout the inner half of the helium core by Rayleigh-Taylor
instabilities at the Ni+Si/O and C+O/He interfaces, seeded by convective
overturn during the early stages of the explosion. Fast moving nickel mushrooms
with velocities up to about 4000 km/s are observed. This offers a natural
explanation for the mixing required in light curve and spectral synthesis
studies of Type Ib explosions. A continuation of the calculations to later
times, however, indicates that the iron velocities observed in SN 1987 A cannot
be reproduced because of a strong deceleration of the clumps in the dense shell
left behind by the shock at the He/H interface.Comment: 8 pages, LaTeX, 2 postscript figures, 2 gif figures, shortened and
slightly revised text and references, accepted by ApJ Letter
Mass Limits For Black Hole Formation
We present a series of two-dimensional core-collapse supernova simulations
for a range of progenitor masses and different input physics. These models
predict a range of supernova energies and compact remnant masses. In
particular, we study two mechanisms for black hole formation: prompt collapse
and delayed collapse due to fallback. For massive progenitors above 20 solar
masses, after a hydrodynamic time for the helium core (a few minutes to a few
hours), fallback drives the compact object beyond the maximum neutron star mass
causing it to collapse into a black hole. With the current accuracy of the
models, progenitors more massive than 40 solar masses form black holes directly
with no supernova explosion (if rotating, these black holes may be the
progenitors of gamma-ray bursts). We calculate the mass distribution of black
holes formed, and compare these predictions to the observations, which
represent a small biased subset of the black hole population. Uncertainties in
these estimates are discussed.Comment: 15 pages total, 4 figures, Modifications in Conclusion, accepted by
Ap
Comment on "Cherenkov Radiation by Neutrinos in a Supernova Core"
Mohanty and Samal have shown that the magnetic-moment interaction with
nucleons contributes significantly to the photon dispersion relation in a
supernova core, and with an opposite sign relative to the usual plasma effect.
Because of a numerical error they overestimated the magnetic-moment term by two
orders of magnitude, but it is still of the same order as the plasma effect. It
appears that the Cherenkov processes gamma+nu -> nu and nu -> nu+gamma remain
forbidden, but a final verdict depends on a more detailed investigation of the
dynamical magnetic susceptibility of a hot nuclear medium.Comment: 2 pages, REVTEX. Submitted as a Comment to PR
Light curve analysis of ordinary type IIP supernovae based on neutrino-driven explosion simulations in three dimensions
Type II-plateau supernovae (SNe IIP) are the most numerous subclass of
core-collapse SNe originating from massive stars. In the framework of the
neutrino-driven explosion mechanism, we study the SN outburst properties for a
red supergiant progenitor model and compare the corresponding light curves with
observations of the ordinary Type IIP SN 1999em. Three-dimensional (3D)
simulations of (parametrically triggered) neutrino-driven explosions are
performed with the (explicit, finite-volume, Eulerian, multifluid
hydrodynamics) code PROMETHEUS, using a presupernova model of a 15 Msun star as
initial data. At approaching homologous expansion, the hydrodynamical and
composition variables of the 3D models are mapped to a spherically symmetric
configuration, and the simulations are continued with the (implicit, Lagrangian
radiation-hydrodynamics) code CRAB to follow the blast-wave evolution during
the SN outburst. Our 3D neutrino-driven explosion model with an explosion
energy of about 0.5x10^51 erg produces Ni-56 in rough agreement with the amount
deduced from fitting the radioactively powered light-curve tail of SN 1999em.
The considered presupernova model, 3D explosion simulations, and light-curve
calculations can explain the basic observational features of SN 1999em, except
for those connected to the presupernova structure of the outer stellar layers.
Our 3D simulations show that the distribution of Ni-rich matter in velocity
space is asymmetric with a strong dipole component that is consistent with the
observations of SN 1999em. The monotonic luminosity decline from the plateau to
the radioactive tail in ordinary SNe IIP is a manifestation of the intense
turbulent mixing at the He/H composition interface.Comment: 16 pages, 13 figures, 2 tables; added figure, discussions, and
references; accepted for publication in Ap
Dexamethasone and RU24858 induce survival and growth factor receptor bound protein 2, leukotriene B4 receptor 1 and annexin-1 expression in primary human neutrophils
Glucocorticoids are widely used anti-inflammatory medication in diseases like asthma and chronic obstructive pulmonary disease. Glucocorticoids can either activate (transactivation) or inhibit (transrepression) transcription. RU24858 was introduced as a dissociated glucocorticoid and it has been reported to transrepress but not to transactivate. The aim of this study was to compare the effects of RU24858 and dexamethasone in human neutrophils. RU24858 delayed spontaneous neutrophil apoptosis and further enhanced GM-CSF- induced neutrophil survival to a similar extent as dexamethasone. Like dexamethasone RU24858 also reduced CXCL8 and MIP-1α. Unexpectedly however, RU24858 increased the expression of the glucocorticoid-inducible genes BLT-1, Annexin-1 and Grb-2 in neutrophils to a similar level as seen with dexamethasone. We have shown here that dexamethasone and RU24858 both increase Grb-2, BLT1 and Annexin-1 expression and inhibit CXCL8 and MIP-1α production. This suggests that RU24858 was not able to dissociate between transactivation and transrepression in human neutrophils but enhanced neutrophil survival. © the author(s), publisher and licensee Libertas Academica Ltd
Global Anisotropies in Supernova Explosions and Pulsar Recoil
We show by two-dimensional and first three-dimensional simulations of
neutrino-driven supernova explosions that low (l=1,2) modes can dominate the
flow pattern in the convective postshock region on timescales of hundreds of
milliseconds after core bounce. This can lead to large global anisotropy of the
supernova explosion and pulsar kicks in excess of 500 km/s.Comment: 3 pages, 2 figures, contribution to Procs. 12th Workshop on Nuclear
Astrophysics, Ringberg Castle, March 22-27, 200
Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 one-dimensional neutrino-driven explosion
A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to
originate from the low-mass end of progenitors with . However, degeneracy effects make stellar evolution modelling of
such stars challenging, and few predictions for their supernova light curves
and spectra have been presented. Here we calculate synthetic nebular spectra of
a 9 Fe CCSN model exploded with the neutrino mechanism. The model
predicts emission lines with FWHM1000 km/s, including signatures from
each deep layer in the metal core. We compare this model to observations of the
three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs,
and SN 2008bk. The prediction of both line profiles and luminosities are in
good agreement with SN 1997D and SN 2008bk. The close fit of a model with no
tuning parameters provides strong evidence for an association of these objects
with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the
observational coverage ended before key diagnostic lines from the core had
emerged. We perform a parameterised study of the amount of explosively made
stable nickel, and find that none of these three SNe show the high
Ni/Ni ratio predicted by current models of electron capture SNe
(ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O
and He shell material, these SNe rather originate from Fe core progenitors. We
argue that the outcome of self-consistent explosion simulations of low-mass
stars, which gives fits to many key observables, strongly suggests that the
class of subluminous Type IIP SNe is the observational counterpart of the
lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment
- …