10 research outputs found

    Estimation of genetic diversity in viral populations from next generation sequencing data with extremely deep coverage

    Get PDF
    In this paper we propose a method and discuss its computational implementation as an integrated tool for the analysis of viral genetic diversity on data generated by high-throughput sequencing. Most methods for viral diversity estimation proposed so far are intended to take benefit of the longer reads produced by some NGS platforms in order to estimate a population of haplotypes. Our goal here is to take advantage of distinct virtues of a certain kind of NGS platform - the platform SOLiD (Life Technologies) is an example - that has not received much attention due to the short length of its reads, which renders haplotype estimation very difficult. However, this kind of platform has a very low error rate and extremely deep coverage per site and our method is designed to take advantage of these characteristics. We propose to measure the populational genetic diversity through a family of multinomial probability distributions indexed by the sites of the virus genome, each one representing the populational distribution of the diversity per site. The implementation of the method focuses on two main optimization strategies: a read mapping/alignment procedure that aims at the recovery of the maximum possible number of short-reads; the estimation of the multinomial parameters through a Bayesian approach, which, unlike simple frequency counting, allows one to take into account the prior information of the control population within the inference of a posterior experimental condition and provides a natural way to separate signal from noise, since it automatically furnishes Bayesian confidence intervals. The methods described in this paper have been implemented as an integrated tool called Tanden (Tool for Analysis of Diversity in Viral Populations).Comment: 30 pages, 5 figures, 2 tables, Tanden is written in C# (Microsoft), runs on the Windows operating system, and can be downloaded from: http://tanden.url.p

    Virus Replication as a Phenotypic Version of Polynucleotide Evolution

    Full text link
    In this paper we revisit and adapt to viral evolution an approach based on the theory of branching process advanced by Demetrius, Schuster and Sigmund ("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46 (1985) 239-262), in their study of polynucleotide evolution. By taking into account beneficial effects we obtain a non-trivial multivariate generalization of their single-type branching process model. Perturbative techniques allows us to obtain analytical asymptotic expressions for the main global parameters of the model which lead to the following rigorous results: (i) a new criterion for "no sure extinction", (ii) a generalization and proof, for this particular class of models, of the lethal mutagenesis criterion proposed by Bull, Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18 (2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with a quantitative prescription for its evaluation, (iv) the quantitative description of the evolution of the expected values in in four distinct "stages": extinction threshold, lethal mutagenesis, stationary "equilibrium" and transient. Finally, based on these quantitative results we are able to draw some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text overlap with arXiv:1110.336

    A Recombinant Protein Based on Trypanosoma cruzi P21 Enhances Phagocytosis

    Get PDF
    Background: P21 is a secreted protein expressed in all developmental stages of Trypanosoma cruzi. The aim of this study was to determine the effect of the recombinant protein based on P21 (P21-His(6)) on inflammatory macrophages during phagocytosis. Findings: Our results showed that P21-His(6) acts as a phagocytosis inducer by binding to CXCR4 chemokine receptor and activating actin polymerization in a way dependent on the PI3-kinase signaling pathway. Conclusions: Thus, our results shed light on the notion that native P21 is a component related to T. cruzi evasion from the immune response and that CXCR4 may be involved in phagocytosis. P21-His(6) represents an important experimental control tool to study phagocytosis signaling pathways of different intracellular parasites and particles.Fundacao de Amparo a Pesquisa do Estado de Minas Gerais [APQ-00621-11]Fundacao de Amparo a Pesquisa do Estado de Minas GeraisFundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao PauloCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior [23038005295/2011-40]Coordenacao de Aperfeicoamento de Pessoal de Nivel SuperiorConselho Nacional de Desenvolvimento Cientifico e TecnologicoConselho Nacional de Desenvolvimento Cientifico e Tecnologic

    Faster HIV-1 Disease Progression among Brazilian Individuals Recently Infected with CXCR4-Utilizing Strains

    Get PDF
    Introduction: Primary HIV infection is usually caused by R5 viruses, and there is an association between the emergence of CCXR4-utilizing strains and faster disease progression. We characterized HIV-1 from a cohort of recently infected individuals in Brazil, predicted the virus's co-receptor use based on the env genotype and attempted to correlate virus profiles with disease progression. Methods: A total of 72 recently infected HIV patients were recruited based on the Serologic Testing Algorithm for Recent HIV Seroconversion and were followed every three to four months for up to 78 weeks. The HIV-1 V3 region was characterized by sequencing nine to twelve weeks after enrollment. Disease progression was characterized by CD4+ T-cell count decline to levels consistently below 350 cells/mu L. Results: Twelve out of 72 individuals (17%) were predicted to harbor CXCR4-utilizing strains; a baseline CD4,350 was more frequent among these individuals (p = 0.03). Fifty-seven individuals that were predicted to have CCR5-utilizing viruses and 10 individuals having CXCR4-utilizing strains presented with baseline CD4.350; after 78 weeks, 33 individuals with CCR5 strains and one individual with CXCR4 strains had CD4.350 (p = 0.001). There was no association between CD4 decline and demographic characteristics or HIV-1 subtype. Conclusions: Our findings confirm the presence of strains with higher in vitro pathogenicity during early HIV infection, suggesting that even among recently infected individuals, rapid progression may be a consequence of the early emergence of CXCR4-utilizing strains. Characterizing the HIV-1 V3 region by sequencing may be useful in predicting disease progression and guiding treatment initiation decisions.Brazilian Program for STD and AIDSBrazilian Program for STD and AIDSMinistry of Health [914/BRA/3014-UNESCO/Kallas]Ministry of HealthSao Paulo City Health DepartmentSao Paulo City Health Department [2004-0.168.922-7/Kallas]Fundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao Paulo [04/15856-9/Diaz]Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Brazilian Ministry of EducationBrazilian Ministry of Educatio

    B cells from HIV-infected patients with primary central nervous system lymphoma display an activated phenotype and have a blunted TNF-α response to TLR9 triggering

    Full text link
    Each cell in HIV-associated primary central nervous system lymphoma (PCNSL) harbors latent EBV. Notably, the triggering of TLR9, a key event in HIV pathogenesis, also promotes EBV latency and transformation. We hypothesized that because only a minority of HIV-infected patients develops PCNSL, their B cells exhibit aberrant signaling responses to TLR9 triggering. We found higher levels of IL-6, CD80, and CD86 expression at baseline in B cells of those patients than in B cells of matched controls, whereas TNF-a expression was lower. Notably, on TLR9 triggering with CpG 2006, CD80 and TNF-α were up-regulated to a lesser extent in B cells of the former than in those of matched controls. The reduced up-regulation of CD80 might be explained by its higher baseline expression resulting in a more blunted response rather than a specific deficit of the signaling response to TLR9 triggering. However, this cannot explain the blunted TNF-α response, which warrants further investigation. Finally, since increased IL-6 expression is linked to EBV-associated Hodgkin’s lymphoma, the enhanced baseline expression of IL-6 might be important in the pathogenesis of PCNSL in HIV-infected patients

    Direct RNA Sequencing Reveals SARS-CoV-2 m6A Sites and Possible Differential DRACH Motif Methylation among Variants

    No full text
    The causative agent of COVID-19 pandemic, SARS-CoV-2, has a 29,903 bases positive-sense single-stranded RNA genome. RNAs exhibit about 150 modified bases that are essential for proper function. Among internal modified bases, the N6-methyladenosine, or m6A, is the most frequent, and is implicated in SARS-CoV-2 immune response evasion. Although the SARS-CoV-2 genome is RNA, almost all genomes sequenced thus far are, in fact, reverse transcribed complementary DNAs. This process reduces the true complexity of these viral genomes because the incorporation of dNTPs hides RNA base modifications. Here, we present an initial exploration of Nanopore direct RNA sequencing to assess the m6A residues in the SARS-CoV-2 sequences of ORF3a, E, M, ORF6, ORF7a, ORF7b, ORF8, N, ORF10 and the 3′-untranslated region. We identified fifteen m6A methylated positions, of which, six are in ORF N. Additionally, because m6A is associated with the DRACH motif, we compared its distribution in major SARS-CoV-2 variants. Although DRACH is highly conserved among variants, we show that variants Beta and Eta have a fourth position C > U change in DRACH at 28,884b that could affect methylation. This is the first report of direct RNA sequencing of a Brazilian SARS-CoV-2 sample coupled with the identification of modified bases

    Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure

    No full text
    We describe drug-resistance mutation dynamics of the gag gene among individuals under antiretroviral virologic failure who underwent analytical treatment interruption (ATI). These mutations occur in and around the cleavage sites that form the particles that become the mature HIV-1 virus. The study involved a 12-week interruption in antiretroviral therapy (ART) and sequencing of the gag gene in 38 individuals experiencing virologic failure and harboring triple-class resistant HIV strains. Regions of the gag gene surrounding the NC-p2 and p1-p6 cleavage sites were sequenced at baseline before ATI and after 12 weeks from plasma HIV RNA using population-based Sanger sequencing. Fourteen of the sixteen patients sequenced presented at least one mutation in the gag gene at baseline, with an average of 4.93 mutations per patient. All the mutations had reverted to the wild type by the end of the study. Mutations in the gag gene complement mutations in the pol gene to restore HIV fitness. Those mutations around cleavage sites and within substrates contribute to protease inhibitor resistance and difficulty in re-establishing effective virologic suppression. ART interruption in the presence of antiretroviral resistant HIV strains was used here as a practical measure for more adapted HIV profiles in the absence of ART selective pressure
    corecore