7 research outputs found

    Tracking the Mn diffusion in the carbon-supported nanoparticles through the collaborative analysis of atom probe and evaporation simulation

    Full text link
    Carbon-supported nanoparticles have been used widely as efficient catalysts due to their enhanced surface-to-volume ratio. To investigate their structure-property relationships, acquiring 3D elemental distribution is highly required. Here, the carbon-supported Pt, PtMn alloy, and ordered Pt3Mn nanoparticles are synthesized and analyzed with atom probe tomography as model systems. The significant difference of Mn distribution after the heat-treatment was found. Finally, the field evaporation behavior of the carbon support was discussed and each acquired reconstruction was compared with computational results from the evaporation simulation. This paper provides a guideline for studies using atom probe tomography on the heterogeneous carbon-nanoparticle system that leads to insights toward to a wide application in carbon-supported nano-catalysts

    In-situ metallic coating of atom probe specimen for enhanced yield, performance, and increased field-of-view

    Full text link
    Atom probe tomography requires needle-shaped specimens with a diameter typically below 100 nm, making them both very fragile and reactive, and defects (notches at grain boundaries or precipitates) are known to affect the yield and data quality. The use of a conformal coating directly on the sharpened specimen has been proposed to increase yield and reduce background. However, to date, these coatings have been applied ex-situ and mostly are not uniformly. Here, we report on the controlled focused ion beam in-situ deposition of a thin metal film on specimens immediately after specimen preparation. Different metallic targets e.g. Cr were attached to a micromanipulator via a conventional lift-out method and sputtered using the Ga or Xe ions. We showcase the many advantages of coating specimens from metallic to non-metallic materials. We have identified an increase in data quality and yield, an improvement of the mass resolution, as well as an increase in the effective field-of-view enabling visualization of the entire original specimen, including the complete surface oxide layer. The ease of implementation of the approach makes it very attractive for generalizing its use across a very wide range of atom probe analyses

    Novel Ni–Co-based superalloys with high thermal stability and specific yield stress discovered by directed energy deposition

    No full text
    We report on the rapid alloy screening of Ni–Co–Ti–Al–Mo superalloys with high thermal stability and specific yield stress by means of directed energy deposition. A laser directed energy deposition, a specific type of additive manufacturing, was employed using multiple powder feeders and elemental powders. Fifty superalloys of different compositions were deposited and the heat-treated microstructure and γ' solvus temperature were examined. The 43Ni–38Co–9Ti–6Al–4Mo superalloy (atomic percent composition) exhibited a uniform γ/γ' microstructure and a γ' solvus temperature of 1202°C. The beneficial properties of the superalloy were also found in the cast superalloy of identical composition. The cast superalloy exhibited a thermally stable γ/γ' microstructure with cuboidal γ' precipitates even after long-term aging heat treatments at 800°C, 900°C, and 1000°C up to 500 h. The γ'-coarsening mechanism was evaluated based on the Lifshitz–Slyozov–Wagner model and the trans-interface diffusion-controlled model. A transition between these two mechanisms was observed with an increase in aging temperature. Atom probe tomography analyses revealed that the sluggish interface diffusion of Co and corresponding reduction of the interfacial energy induced the transition of the γ'-coarsening mechanism. Moreover, the cast superalloy showed an enhanced specific yield stress attributed to its exceptionally low alloy density of 7.61 g/cm3

    Effect of Heat Treatment Temperature on the Crystallization Behavior and Microstructural Evolution of Amorphous NbCo<sub>1.1</sub>Sn

    No full text
    Heat treatment-induced nanocrystallization of amorphous precursors is a promising method for nanostructuring half-Heusler compounds as it holds significant potential in the fabrication of intricate and customizable nanostructured materials. To fully exploit these advantages, a comprehensive understanding of the crystallization behavior of amorphous precursors under different crystallization conditions is crucial. In this study, we investigated the crystallization behavior of the amorphous NbCo1.1Sn alloy at elevated temperatures (783 and 893 K) using transmission electron microscopy and atom probe tomography. As a result, heat treatment at 893 K resulted in a significantly finer grain structure than heat treatment at 783 K owing to the higher nucleation rate at 893 K. At both temperatures, the predominant phase was a half-Heusler phase, whereas the Heusler phase, associated with Co diffusion, was exclusively observed at the specimen annealed at 893 K. The Debye–Callaway model supports that the lower lattice thermal conductivity of NbCo1.1Sn annealed at 893 K is primarily attributed to the formation of Heusler nanoprecipitates rather than a finer grain size. The experimental findings of this study provide valuable insights into the nanocrystallization of amorphous alloys for enhancing thermoelectric properties
    corecore