2,501 research outputs found

    Formation of high-quality Ag-based ohmic contacts to p-type GaN

    Get PDF
    Low resistance and high reflectance ohmic contacts on p-type GaN were achieved using an Ag-based metallization scheme. Oxidation annealing was the key to achieve ohmic behavior of Ag-based contacts on p-type GaN. A low contact resistivity of similar to 5x10(-5) Omega cm(2) could be achieved from Me (=Ni, Ir, Pt, or Ru)/Ag (50/1200 angstrom) contacts after annealing at 500 degrees C for 1 min in O(2) ambient. Oxidation annealing promoted the out-diffusion of Ga atoms from the GaN layer, and Ga atoms dissolved in the in-diffused Ag layer with the formation of Ag-Ga solid solution, resulting in ohmic contact formation. Using Ru/Ni/Au (500/200/500 angstrom) overlayers on the Me/Ag contacts, the excessive incorporation of oxygen molecules into the contact interfacial region, and the out-diffusion and agglomeration of Ag, were effectively prevented during oxidation annealing. As a result, a high reflectance of 87.2% at the 460 nm wavelength and a smooth surface morphology could be obtained simultaneously. (C) 2008 The Electrochemical Society.open111618sciescopu

    Past, Present and Future Molecular Approaches to Improve Yield in Wheat

    Get PDF
    This chapter addresses the development and use of molecular markers for yield enhancement in wheat. Since their key goal for breeding is to maximize yield, extensive efforts have been made toward the improvement of yield. Agronomic traits related to yield, yield-related, disease resistance, and abiotic stresses are considered to be quantitative traits (QTLs), also known as complex traits, because they are controlled by numerous genes and are affected by environmental factors. Researchers have been studying such traits in the past decades for the development of molecular markers which can be used in various wheat breeding studies mainly involving restriction fragment length polymorphism (RFLP), simple sequence repeat (SSR), single nucleotide polymorphism (SNP), random amplified polymorphic DNA (RAPD), and amplified fragment length polymorphism (AFLP). Furthermore, the advent of next-generation sequencing (NGS) has accelerated the discovery of agronomically important genes. All of the technologies have enabled great advances for increasing the productivity of wheat. Here, the past history of first-generation sequencing, present status of second-generation sequencing, and future potential of translational genomics linked to the yield will be discussed

    Culture and Development: Reassessing Cultural Explanations on Asian Economic Development

    Get PDF
    Economic success in East Asia has no precedent in the history of capitalist development, in terms of massive growth in the scales of economy in a relatively short period of time. However, existing theories of economic development have failed to unravel the East Asian puzzle fully. This has led scholars to search for new models and to develop an Asia-specific Confucian notion of economic development based on the assumption that successful Asian countries share a Confucianism as a common cultural factor. Although it has gained popularity over the years, the neo-Confucian perspective has a number of serious theoretical and methodological problems. This paper reviews the problems inherent in the neo-Confucian perspective and offers suggestions by which this perspective can be a viable and complentary approach to mainstream approaches to explaining development. The current Asian economic crisis seems to nullify neo-Confucian explanations for Asian development. This paper, however, argues that a cultural approach, if it solves inherent conceptual, theoretical, and methodological problems, has the potential to explain the current economic crisis as well as explaining rapid development in Asia

    Pressureless sinterability study of ZrB2–SiC composites containing hexagonal BN and phenolic resin additives

    Get PDF
    This research is dedicated to the role of different amounts of hexagonal BN (hBN: 0, 1.5, 3, and 4.5 wt%) on the pressureless sinterability of ZrB2–25 vol% SiC ceramics. Phenolic resin (5 wt%) with a carbon yield of ~40 % was incorporated as a binder to the powder mixtures and after initial cold pressing, the final sintering process was performed at 1900 °C for 100 min in a vacuum furnace. The as-sintered specimens were characterized by X-ray diffractometry, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results disclosed that the incorporation of 1.5 wt% hBN could increase the relative density to ~92%, while the sample with zero hBN content just reached ~81% of full densification. Appropriate hBN content not only facilitated the particle rearrangement during the cold pressing, but also removed the harmful oxide impurities during the final sintering. Nevertheless, the addition of higher amounts of hBN remarkably lessened the densification because of more delamination of the non-reacted hBN flakes and release and entrapment of more gaseous by-products induced by the reacted hBN phases

    Mesenchymal Stem Cells Improve Wound Healing In Vivo via Early Activation of Matrix Metalloproteinase-9 and Vascular Endothelial Growth Factor

    Get PDF
    We investigated the effects of mesenchymal stem cells (MSCs) on wound healing using a three-dimensional (3D) collagen gel scaffold. Three circular full-thickness skin defects were created on the back of Sprague-Dawley rats. One site was covered with a 3D collagen gel containing 2 × 106 MSCs (MSCs+/3D collagen+). Another site was replaced with a 3D collagen gel without MSCs and the third site was left empty. The wound size was significantly reduced in the MSCs+/3D collagen+ sites. MSCs+/3D collagen+ sites exhibited the most neovascularization. FISH showed that Y-chromosome possessing cells were found within the dermis of MSCs+/3D collagen+ sites. Gelatin zymography revealed that the most intense expression of MMP-9 was detected early in the MSCs+/3D collagen+ sites. Our results indicate that MSCs upregulate the early expression of MMP-9 which induces the early mobilization of VEGF. Thus, MSCs appear to accelerate significantly wound healing via early activation of MMP-9 and VEGF
    corecore