95 research outputs found

    Importance of Dietary Uptake for in Situ Bioaccumulation of Systemic Fungicides Using Gammarus pulex as a Model Organism

    Get PDF
    Bioaccumulation of organic contaminants from contaminated food sources might pose an underestimated risk toward shredding invertebrates. This assumption is substantiated by monitoring studies observing discrepancies of predicted tissue concentrations determined from laboratory-based experiments compared with measured concentrations of systemic pesticides in gammarids. To elucidate the role of dietary uptake in bioaccumulation, gammarids were exposed to leaf material from trees treated with a systemic fungicide mixture (azoxystrobin, cyprodinil, fluopyram, and tebuconazole), simulating leaves entering surface waters in autumn. Leaf concentrations, spatial distribution, and leaching behavior of fungicides were characterized using liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-HRMS/MS) and matrix-assisted laser desorption ionization-mass spectrometric imaging. The contribution of leached fungicides and fungicides taken up from feeding was assessed by assembling caged (no access) and uncaged (access to leaves) gammarids. The fungicide dynamics in the test system were analyzed using LC-HRMS/MS and toxicokinetic modeling. In addition, a summer scenario was simulated where water was the initial source of contamination and leaves contaminated by sorption. The uptake, translocation, and biotransformation of systemic fungicides by trees were compound-dependent. Internal fungicide concentrations of gammarids with access to leaves were much higher than in caged gammarids of the autumn scenario, but the difference was minimal in the summer scenario. In food choice and dissectioning experiments gammarids did not avoid contaminated leaves and efficiently assimilated contaminants from leaves, indicating the relevance of this exposure pathway in the field. The present study demonstrates the potential impact of dietary uptake on in situ bioaccumulation for shredders in autumn, outside the main application period. The toxicokinetic parameters obtained facilitate modeling of environmental exposure scenarios. The uncovered significance of dietary uptake for detritivores warrants further consideration from scientific as well as regulatory perspectives. Environ Toxicol Chem 2023;00:1-14. (c) 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC

    The intra-cellular localization of the vanillin biosynthetic machinery in pods of Vanilla planifolia

    Get PDF
    Vanillin is the most important flavor compound in the vanilla pod. Vanilla planifolia vanillin synthase (VpVAN) catalyzes the conversion of ferulic acid and ferulic acid glucoside into vanillin and vanillin glucoside, respectively. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) of vanilla pod sections demonstrates that vanillin glucoside is preferentially localized within the mesocarp and placental laminae whereas vanillin is preferentially localized within the mesocarp. VpVAN is present as the mature form (25 kDa) but, depending on the tissue and isolation procedure, small amounts of the immature unprocessed form (40 kDa) and putative oligomers (50, 75 and 100 kDa) may be observed by immunoblotting using an antibody specific to the C-terminal sequence of VpVAN. The VpVAN protein is localized within chloroplasts and re-differentiated chloroplasts termed phenyloplasts, as monitored during the process of pod development. Isolated chloroplasts were shown to convert [14C]phenylalanine and [14C]cinnamic acid into [14C]vanillin glucoside, indicating that the entire vanillin de novo biosynthetic machinery converting phenylalanine to vanillin glucoside is present in the chloroplast

    Tissue-specific stilbene accumulation is an early response to wounding/grafting as revealed by using spatial and temporal metabolomics

    Get PDF
    Grafting is widely used in horticulture. Shortly after grafting, callus tissues appear at the graft interface and the vascular tissues of the scion and rootstock connect. The graft interface contains a complex mix of tissues, we hypothesised that each tissue has its own metabolic response to wounding/grafting and accumulates different metabolites at different rates. We made intact and wounded cuttings and grafts of grapevine, and then measured changes in bulk flavonoid, phenolic acid and stilbenoid concentration and used metabolite imaging to study tissue‐specific responses. We show that some metabolites rapidly accumulate in specific tissues after grafting, for example, stilbene monomers accumulate in necrotic tissues surrounding mature xylem vessels. Whereas other metabolites, such as complex stilbenes, accumulate in the same tissues at later stages. We also observe that other metabolites accumulate in the newly formed callus tissue and identify genotype‐specific responses. In addition, exogenous resveratrol application did not modify grafting success rate, potentially suggesting that the accumulation of resveratrol at the graft interface is not linked to graft union formation. The increasing concentration of complex stilbenes often occurs in response to plant stresses (via unknown mechanisms), and potentially increases antioxidant activity and antifungal capacities

    Quantitative MALDI mass spectrometry imaging for exploring cutaneous drug delivery of tofacitinib in human skin

    Get PDF
    In skin penetration studies, HPLC-MS/MS analysis on extracts of heat-separated epidermis and dermis provides an estimate of the amount of drug penetrated. In this study, MALDI-MSI enabled qualitative skin distribution analysis of endogenous molecules and the drug molecule, tofacitinib and quantitative analysis of the amount of tofacitinib in the epidermis. The delivery of tofacitinib to the skin was investigated in a Franz diffusion cell using three different formulations (two oil-in-water creams, C1 and C2 and an aqueous gel). Further, in vitro release testing (IVRT) was performed and resulted in the fastest release of tofacitinib from the aqueous gel and the lowest from C2. In the ex vivo skin penetration and permeation study, C1 showed the largest skin retention of tofacitinib, whereas, lower retention and higher permeation were observed for the gel and C2. The quantitative MALDI-MSI analysis showed that the content of tofacitinib in the epidermis for the C1 treated samples was comparable to HPLC-MS/MS analysis, whereas, the samples treated with C2 and the aqueous gel were below LOQ. The study demonstrates that MALDI-MSI can be used for the quantitative determination of drug penetration in epidermis, as well as, to provide valuable information on qualitative skin distribution of tofacitinib

    Characterisation and localisation of the endocannabinoid system components in the adult human testis

    Get PDF
    International audienceHeavy use of cannabis (marijuana) has been associated with decreased semen quality, which may reflect disruption of the endocannabinoid system (ECS) in the male reproductive tract by exogenous cannabinoids. Components of ECS have been previously described in human spermatozoa and in the rodent testis but there is little information on the ECS expression within the human testis. In this study we characterised the main components of the ECS by immunohistochemistry (IHC) on archived testis tissue samples from 15 patients, and by in silico analysis of existing transcriptome datasets from testicular cell populations. The presence of 2-arachidonoylglycerol (2-AG) in the human testis was confirmed by matrix-assisted laser desorption ionization imaging analysis. Endocannabinoid-synthesising enzymes; diacylglycerol lipase (DAGL) and N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), were detected in germ cells and somatic cells, respectively. The cannabinoid receptors, CNR1 and CNR2 were detected at a low level in post-meiotic germ cells and Leydig- and peritubular cells. Different transcripts encoding distinct receptor isoforms (CB1, CB1A, CB1B and CB2A) were also differentially distributed, mainly in germ cells. The cannabinoid-metabolising enzymes were abundantly present; the α/β-hydrolase domain-containing protein 2 (ABHD2) in all germ cell types, except early spermatocytes, the monoacylglycerol lipase (MGLL) in Sertoli cells, and the fatty acid amide hydrolase (FAAH) in late spermatocytes and post-meiotic germ cells. Our findings are consistent with a direct involvement of the ECS in regulation of human testicular physiology, including spermatogenesis and Leydig cell function. The study provides new evidence supporting observations that recreational cannabis can have possible deleterious effects on human testicular function. Author Correction:https://www.nature.com/articles/s41598-020-58153-
    corecore