38 research outputs found

    On-line Optodynamic Monitoring of Laser Materials Processing

    Get PDF

    Measurement of Spinal Sagittal Curvatures using the Laser Triangulation Method

    Get PDF
    The purpose of the first part of the study was to establish the variability of repeated measurements in different measuring conditions. In the second part, we performed in a large number of patients, a measurement of thoracic kyphosis and lumbar lordosis and compared them to age, gender, and level of nourishment. In the first part, measurements were performed on a plastic model of the back of a patient with a rigid and a normal spine. In the second part, 250 patients participated in the study (126 men and 124 women). For measuring spinal curvatures we used an apparatus for laser triangulation constructed at the Faculty of Mechanical Engineering, University of Ljubljana. A comparison of 30 repeated measurements was shown as the average value±2 SD which included 95% of the results. Thirty repeated readings of one 3D measurement: thoracic kyphosis 41.2°±0.6°, lumbar lordosis 4.4°±1.2°; 30 measurements on a plastic model: thoracic kyphosis 36.8°±1.2°, lumbar lordosis 30.9°±2.0°; 30 measurements on a patient with a rigid spine: thoracic kyphosis 41.5°±2.4°, lumbar lordosis 4.0°±1.8°; 30 measurements on a patient with a normal spine: thoracic kyphosis 48.8°±7.4°, lumbar lordosis 21.1°±4.4°. The average size of thoracic kyphosis in 250 patients was 46.8° (SD 10.1°) and lumbar lordosis 31.7° (SD 12.5°). The angle size was statistically significantly correlated to gender (increased thoracic kyphosis and lumbar lordosis in women) and body mass index (increased thoracic kyphosis and lumbar lordosis in more nourished patients). Age was not significantly correlated to the observed angles. During measurements of the spinal angles it was important to pay attention to relaxation and the patient’s position as well as to perform more measurements providing the average value. The age and the level of nourishment influence the size of the sagittal spinal angles. In the observed sample the effect of age was not confirmed

    Automatic teaching of a robotic remote laser 3D processing system based on an integrated laser-triangulation profilometry

    Get PDF
    Jedan od bitnih izazova u daljinskoj laserskoj 3D obradi (RL3DP) je postizanje visoke točnosti jer laser radi po rubovima predmeta koji obrađuje. Ovaj rad prikazuje novi RL3DP sustav s automatskom 3D nastavnom funkcionalnošću radi točnog i brzog određivanja prijenosa detektiranih rubova koje obrađuje robot sa 3D skenerom, fiber laserom i izvan aksijalno pozicioniranom kamerom. 3D skeniranje se bazira na laserskoj triangulaciji sa pilotskom laserskom trakom. Eksperimentalni rezultati pokazuju da sustav ima preciznost bolju od 70 μm i 120 μm u bočnom i vertikalnom smjeru u mjernom području od 100 × 100 mm. Vrijeme učenja je 30-puta kraće u odnosu na vizualni postupak. Stoga, takav sustav može značajno smanjiti troškove obrade sa modernim proizvodnim sistemima koji se moraju prilagođavati stalnim promjenama geometrije i funkcionalnosti proizvoda.One of the key challenges in robotic remote laser 3D processing (RL3DP) is to achieve high accuracy for the laser’s working trajectory relative to the features of the workpiece. This paper presents a novel RL3DP system with an automatic 3D teaching functionality for a precise and rapid determination of the working trajectory which comprises a robot manipulator, 3D scanning head, fibre laser and an off-axis positioned camera. The 3D measurement is based on laser triangulation with laser-stripe illumination using the laser’s pilot beam and scanning head. The experimental results show that the system has a precision better than 70 μm and 120 μm along lateral and vertical direction respectively inside the measuring range of 100 × 100 mm. The teaching time is 30-times shorter compared to a visual teaching procedure. Therefore, such a system can lead to large cost reductions for modern production lines that have constant changes to the products’ geometries and functionalities

    Nomograms for Visualization of Naive Bayesian Classifier

    Get PDF
    Besides good predictive performance, the naive Bayesian classifier can also offer a valuable insight into the structure of the training data and effects of the attributes on the class probabilities. This structure may be effectively revealed through visualization of the classifier. We propose a new way to visualize the naive Bayesian model in the form of a nomogram. The advantages of the proposed method are simplicity of presentation, clear display of the effects of individual attribute values, and visualization of confidence intervals. Nomograms are intuitive and when used for decision support can provide a visual explanation of predicted probabilities. And finally, a naive Bayesian nomogram can be printed out and used for probability prediction without the use of computer or calculator

    Računske vaje iz fizike

    No full text

    Green upconversion in Y2O3 :Yb nanopowder

    Full text link
    Green emission lines, in addition to the blue and the red, were observed upon 980 nm excitation in yttrium oxide (Y2O3) nanopowder codoped with Yb3+ and Tm3+, synthesized by the chemical combustion method. Upconversion emission studies suggest that the number and characteristics of the green lines are influenced by the annealing temperature as well as by the Yb3+/Tm3+ concentration ratio, opening possibilities for new customized applications. The chromaticity properties of the upconversion spectra were quantified by the Commission Internationale de l\u27éclairage coordinate analysis

    Prehod iz 1D v 2D lasersko induciranega širjenja ultrazvočnih valov v široki plošči

    Full text link
    Optodynamic interaction between a laser pulse and the surface of an opaque, solid elastic object produces transient waves that propagate and reverberate within the object. They can be, in general, categorized into three distinctive types which are all formed through different mechanisms: ablation-induced waves, light-pressure-induced waves, and thermoelastic waves. In this paper, out-of-plane displacements of such waves are simulated at the epicentral position on the opposite side of an extended plane-parallel elastic plate. Wave propagation is mathematically described by Greenʼs transfer functions convolved with suitable time profiles of the incoming laser pulses. The simulated size of the circularly symmetric laser-illuminated area on the plate surface is varied to show the limit-to-limit transition of the displacement waveforms: from a 2D point source to an infinite 1D source.Optodinamska interakcija med laserskim bliskom in površino neprozornega trdnega elastičnega predmeta povzroči prehodne valove, ki se širijo in zvenijo znotraj predmeta. V splošnem se jih lahko razdeli na tri značilne vrste, ki se razlikujejo glede na mehanizem nastanka: ablacijsko inducirane valove, valove povzročene s svetlobnim tlakom in termoelastične valove. V tem članku so simulirani izvenravninski pomiki takih valov v epicentralnem položaju na nasprotni površini široke planparalelne elastične plošče. Širjenje valovanja se matematično opiše s konvolucijo Greenove prenosne funkcije z ustreznim časovnim potekom vpadlega laserskega bliska. Pri tem se simulirana velikost vpadnega območja krožno simetričnega laserskega bliska na površini plošče spreminja, s čimer je prikazan prehod valovnih oblik iz ene limite drugo: iz 2D točkastega vira v neskončen 1D vir

    Characterization of the head-to-trunk orientation with handheld optical 3D apparatus based on the fringe projection technique

    Get PDF
    BACKGROUND: Knowing the orientation of the head is important in many fields, including medicine. Many methods and measuring systems exist, but usually they use different markers or sensors attached to the subject’s head for head orientation determination. In certain applications these attachments may represent a burden or a distraction to the subject under study which may have an unfavourable impact on the measurement. We propose a non-contact optical method for head-to-trunk orientation measurement that does not require any attachments to the subject under study. METHODS: An innovative handheld 3D apparatus has been developed for non-invasive and fast 3D shape measurements. It is based on the triangulation principle in combination with fringe projection. The shape of the subject’s upper trunk and head is reconstructed from a single image using the Fourier transform profilometry method. Two shape measurements are required to determine the head-to-trunk orientation angles: one in the reference (neutral) position and the other one in the position of interest. The algorithm for the head-to-trunk orientation angle extraction is based on the separate alignment of the shape of the subject’s upper trunk and head against the corresponding shape in the reference pose. Single factor analysis of variance (ANOVA) was used for statistical characterisation of the method precision. RESULTS: The method and the 3D apparatus were verified in-vitro using a mannequin and a reference orientation tracker. The uncertainty of the calculated orientation was 2°. During the in-vivo test with a human subject diagnosed with cervical dystonia (aged 60), the repeatability of the measurements was 3°. In-vitro and in-vivo comparison was done on the basis of an experiment with the mannequin and a healthy male (aged 29). These results show that only the difference between flexion/extension measured angles was statistically significant. The differences between means were less than 1° for all ranges. CONCLUSIONS: The new non-contact method enables the compensation of the movement of the measuring instrument or the subject’s body as a whole, is non-invasive, requires little additional equipment and causes little stress for the subject and operator. We find that it is appropriate for measurements of the head orientation with respect to the trunk for the characterization of the cervical dystonia
    corecore