302 research outputs found

    Nickel Manganite-Sodium Alginate Nano-Biocomposite for Temperature Sensing

    Get PDF
    Nanocrystalline nickel manganite (NiMn2O4) powder with a pure cubic spinel phase structure was synthesized via sol-gel combustion and characterized with XRD, FT-IR, XPS and SEM. The powder was mixed with sodium alginate gel to form a nano-biocomposite gel, dried at room temperature to form a thick film and characterized with FT-IR and SEM. DC resistance and AC impedance of sensor test structures obtained by drop casting the nano-biocomposite gel onto test interdigitated PdAg electrodes on an alumina substrate were measured in the temperature range of 20-50 degrees C at a constant relative humidity (RH) of 50% and at room temperature (25 degrees C) in the RH range of 40-90%. The material constant obtained from the measured decrease in resistance with temperature was determined to be 4523 K, while the temperature sensitivity at room temperature (25 degrees C) was -5.09%/K. Analysis of the complex impedance plots showed a dominant influence of grains. The decrease in complex impedance with increase in temperature confirmed the negative temperature coefficient effect. The grain resistance and grain relaxation frequency were determined using an equivalent circuit. The activation energy for conduction was determined as 0.45 eV from the temperature dependence of the grain resistance according to the small polaron hopping model, while the activation energy for relaxation was 0.43 eV determined from the Arrhenius dependence of the grain relaxation frequency on temperature

    Increased Cellular Uptake of Biocompatible Superparamagnetic Iron Oxide Nanoparticles into Malignant Cells by an External Magnetic Field

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) are used as delivery systems for different therapeutics including nucleic acids for magnetofection-mediated gene therapy. The aim of our study was to evaluate physicochemical properties, biocompatibility, cellular uptake and trafficking pathways of the custom-synthesized SPIONs for their potential use in magnetofection. Custom-synthesized SPIONs were tested for size, shape, crystalline composition and magnetic behavior using a transmission electron microscope, X-ray diffractometer and magnetometer. SPIONs were dispersed in different aqueous media to obtain ferrofluids, which were tested for pH and stability using a pH meter and zetameter. Cytotoxicity was determined using the MTS and clonogenic assays. Cellular uptake and trafficking pathways were qualitatively evaluated by transmission electron microscopy and quantitatively by inductively coupled plasma atomic emission spectrometry. SPIONs were composed of an iron oxide core with a diameter of 8–9 nm, coated with a 2-nm-thick layer of silica. SPIONs, dispersed in 0.9% NaCl solution, resulted in a stable ferrofluid at physiological pH for several months. SPIONs were not cytotoxic in a broad range of concentrations and were readily internalized into different cells by endocytosis. Exposure to neodymium-iron-boron magnets significantly increased the cellular uptake of SPIONs, predominantly into malignant cells. The prepared SPIONs displayed adequate physicochemical and biomedical properties for potential use in magnetofection. Their cellular uptake was dependent on the cell type, and their accumulation within the cells was dependent on the duration of exposure to an external magnetic field

    The effect of inelastic processes on tunneling

    Full text link
    We study an electron that interacts with phonons or other linear or nonlinear excitations as it resonantly tunnels. The method we use is based on mapping a many-body problem in a large variational space exactly onto a one-body problem. The method is conceptually simpler than previous Green's function approaches, and allows the essentially exact numerical solution of much more general problems. We solve tunneling problems with transverse channels, multiple sites coupled to phonons, and multiple phonon degrees of freedom and excitations.Comment: 12 pages, REVTex, 4 figures in compressed tar .ps forma

    Ocena vlage v mlajšepleistocenskem kraškem okolju: Paleoklima in paleomikrookolje v jami Divje babe I, Slovenija / Assessing Humidity in an Upper Pleistocene Karst Environment: Palaeoclimates and Palaeomicroenvironments at the Cave Divje babe I, Slovenia

    Get PDF
    V članku je prikazan nov sedimentološki-klimatski model za razlago avtohtonih klastičnih sedimentov v mlajšepleistocenskem najdišču Divje babe I v Sloveniji. Analizirani sedimenti pripadajo kisikovi izotopski stopnji 1, 3 in 5 (OIS 1, OIS 3, OIS 5). Poudarek analize je na padavinah, ki smo jih razložili na podlagi količine avtigenih strukturnih agregatov v sedimentih. Ugotovitve smo podprli s kvantitativno analizo reliefno korodiranih klastov, ki pomenijo korozijo jamskega svoda, in izjedkanih kosti, ki pomenijo korozijo v jamskih tleh. Raziskali smo tudi odnos med klimo in jamskim medvedom ter neandertalcem in klimo, in sicer na podlagi množičnih fosilnih ostankov ter najdb artefaktov. Vse analize smo naredili na podlagi trodimenzionalnega vzorčenja, tj. v horizontalni in vertikalni smeri. Vzorčili smo 65 profilov na površini 65 m2. Vsak profil je imel 35 arbitrarnih stratigrafskih enot (režnjev) s podatki o agregatih, izjedkanih kosteh, fosilnih ostankih in artefaktih. Pri razlagi sedimentnih karakteristik, ki nakazujejo klimatske parametre, smo dosledno upoštevali holocenske standarde za najdišče. Ugotovili smo, da je bila klima v OIS 3 hladnejša in bolj vlažna kot v OIS 1 in OIS 5. Na klimatsko spremembo v OIS 3 so se z večjim obiskom jame odzvali ljudje in živali, vendar ne hkrati. Sprememba klime se je na mikrolokaciji jame domnevno pokazala predvsem v podaljšanem trajanju snežne odeje. The article presents a new sedimentary-climatic model for explaining autochthonous clastic sediment in the Upper Pleistocene site, Divje babe I, Slovenia. The sediment analysed here was deposited during Oxygen Isotope Stages 1, 3 and 5 (OIS, OIS 3, OIS 5). The stress is on precipitation, which we explained on the basis of the quantity of authigenic structural aggregates in the sediment. We supported the results with quantitative analysis of clasts with etched surface, which represent corrosion of the cave ceiling, and etched bones, which represent corrosion on the cave ground. We also analysed the relation between climate and cave bears, and Neanderthals and climate, on the basis of mass fossil remains and finds of artefacts. All analyses were made on the basis of three-dimensional sampling, i.e., in horizontal and vertical directions. We sampled 65 profiles over an area of 65 m2. Each profile had 35 arbitrary stratigraphic units (splits) with data on aggregates, etched bones, fossil remains and artefacts. In explaining the sediment characteristics that point to climatic parameters, we consistently took into account the Holocene standards for the site. We found that the climate in OIS 3 was colder and damper than in OIS 1 and OIS 5. People and animals responded to the climatic changes in OIS 3 with more visits to the cave, but not at the same time. The climatic change was presumably reflected in the microlocation of the cave mainly by the longer duration of snow cover.  

    Double exchange magnets: Spin-dynamics in the paramagnetic phase

    Full text link
    The electronic structure of perovskite manganese oxides is investigated in terms of a Kondo lattice model with ferromagnetic Hund coupling and antiferromagnetic exchange between t2gt_{2g}-spins using a finite temperature diagonalization technique. Results for the dynamic structure factor are consistent with recent neutron scattering experiments for the bilayer manganite La1.2_{1.2}Sr1.8_{1.8}Mn2_2O7_7 . The susceptibility shows Curie-Weiss behaviour and is used to derive a phase diagram. In the paramagnetic phase carriers are characterized as ferromagnetic polarons in an antiferromagnetic spin liquid.Comment: Revtex, 4 pages with 5 postscript figures include

    The effect of surface oxidation on the catalytic properties of Ga3Ni2 intermetallic compound for carbon dioxide reduction

    Get PDF
    Background: In a routine handling of a catalyst material, exposure to air can usually not be avoided. For noble metal catalysts that are resistant to oxidation, this is not an issue, but becomes important for intermetallic catalysts composed of two or more non-noble chemical elements that possess much different standard enthalpies of the oxide formation. The element with higher affinity to oxygen concentrates on the surface in the oxide form, whereas the element with lower affinity sinks into the subsurface region. This changes the number of active sites and the catalytic performance of the catalyst. We have investigated the instability of the surface composition to oxidation of the Ga3Ni2 noble metal-free intermetallic compound, a new catalyst for the CO2 reduction to CO, CH4 and methanol. Methods: The instability of the oxidized Ga3Ni2 surface composition to different heating-annealing conditions was studied by X-ray photoelectron spectroscopy (XPS), used to determine the elemental composition and the chemical bonding in the near-surface region. The dispersion of active sites available for the chemisorption of H-2 and CO on the Ga3Ni2 catalyst surface was determined by H-2 and CO temperature-programmed desorption. CO2 conversion experiments were performed by using the catalyst material reduced in hydrogen at temperatures of 300 and 600 degrees C. Results: XPS study of the Ga3Ni2 surface subjected to different heating-annealing conditions has revealed that the concentration of Ga at the oxidized surface is strongly enhanced and the concentration of Ni is strongly depleted with respect to the values in the bulk. By annealing the surface at 600 degrees C in ultra-high vacuum, the oxides have evaporated and thermal diffusion of atoms near the surface has partially reconstructed the surface composition towards the energetically more favorable bulk value, whereas annealing at a lower temperature of 300 degrees C was ineffective to change the surface composition. Catalytic tests were in agreement with the XPS results, where an increased CO2 conversion for the catalyst reduced with hydrogen at a higher temperature followed an increased Ni/Ga surface concentration ratio. Conclusions: The instability of the active surface chemical composition to oxidation in air must be taken into account when considering noble metal-free intermetallic catalysts as alternatives to the conventional catalysts based on noble metals. Ga3Ni2 and other Ga-Ni intermetallic compounds are good examples of binary intermetallic catalysts, whose catalytic performance is strongly affected by exposure to the air

    Exploring the impact of calcination parameters on the crystal structure, morphology, and optical properties of electrospun Fe 2 TiO 5 nanofibers

    Get PDF
    Nanostructured Fe2TiO5 (pseudobrookite), a mixed metal oxide material holds significant promise for utilization in energy and environmental applications. However, its full application is still hindered due to the difficulty to synthesize monophasic Fe2TiO5 with high crystallinity and a large specific surface area. Herein, Fe2TiO5 nanofibers were synthesized via a versatile and low-cost electrospinning method, followed by a calcination process at different temperatures. We found a significant effect of the calcination process and its duration on the crystalline phase in the form of either pseudobrookite or pseudobrookite–hematite–rutile and the morphology of calcined nanofibers. The crystallite size increased whereas the specific surface area decreased with an increase in calcination temperature. At higher temperatures, the growth of Fe2TiO5 nanoparticles and simultaneous coalescence of small particles was noted. The highest specific surface area was obtained for the sample calcined at 500 °C for 6 h (SBET = 64.4 m2 g−1). This work opens new opportunities in the synthesis of Fe2TiO5 nanostructures using the electrospinning method and a subsequent optimized calcination process for energy-related applications

    Influence of Micro-Pore Connectivity and Micro-Fractures on Calcium Leaching of Cement Pastes — A Coupled Simulation Approach

    Get PDF
    A coupled numerical approach is used to evaluate the influence of pore connectivity and microcracks on leaching kinetics in fully saturated cement paste. The unique advantage of the numerical model is the ability to construct and evaluate a material with controlled properties, which is very difficult under experimental conditions. Our analysis is based on two virtual microstructures, which are different in terms of pore connectivity but the same in terms of porosity and the amount of solid phases. Numerical fracturing was performed on these microstructures. The non-fractured and fractured microstructures were both subjected to chemical leaching. Results show that despite very different material physical properties, for example, pore connectivity and effective diffusivity, the leaching kinetics remain the same as long as the amount of soluble phases, i.e., buffering capacity, is the same. The leaching kinetics also remains the same in the presence of microcracks
    corecore