7 research outputs found

    Structure of a burrow of the fawn hopping-mouse Notomys cervinus (Rodentia: Muridae)

    No full text
    Volume: 55Start Page: 98End Page: 10

    Mammals

    No full text

    The endocast of the Night Parrot (Pezoporus occidentalis) reveals insights into its sensory ecology and the evolution of nocturnality in birds

    No full text
    The Night Parrot (Pezoporus occidentalis) is a rare, nocturnal parrot species that has largely escaped scientific investigation due to its behaviour and habitat preferences. Recent field studies have revealed some insights into Night Parrot behaviour, but nothing is known of its sensory abilities. Here, we used μCT scans of an intact Night Parrot specimen to determine if its visual system shares similarities with other nocturnal species. The endocast of the Night Parrot revealed relatively small optic lobes and optic foramina, especially compared with closely related grass parakeets, but no apparent differences in orbit dimensions. Our data suggests that the Night Parrot likely has lower visual acuity than most other parrots, including its congener, the Eastern Ground Parrot (P. wallicus). We propose that the visual system of the Night Parrot might represent a compromise between the need to see under low light conditions and the visual acuity required to detect predators, forage, and fly. Based on the endocast and optic foramen measurements, the Night Parrot fits into a common pattern of decreased retinal input to the optic lobes in birds that should be explored more thoroughly in extant and extinct species

    Conservation genetics of the water mouse, Xeromys myoides Thomas, 1889

    Get PDF
    The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct
    corecore