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Abstract 

The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, 

inhabiting a small number of distinct and isolated coastal regions of Queensland and the 

Northern Territory.  An examination of the evolutionary history and contemporary influences 

shaping the genetic structure of this species is required to make informed conservation 25 

management decisions. Here, we report the first analysis undertaken on the phylogeography and 

population genetics of the water mouse across its mainland Australian distribution.  Genetic 

diversity was assessed at two mitochondrial DNA (Cytochrome b 1000bp, D-loop 400bp) and 

eight microsatellite DNA loci.  Very low genetic diversity was found indicating water mice 

underwent a recent expansion throughout their Australian range and constitute a single 30 

evolutionarily significant unit.  Microsatellite analyses revealed the highest genetic diversity 

was found in the Mackay region of central Queensland; population sub-structure was also 

identified, suggesting that local populations may be isolated in this region. Conversely, the 

Coomera region of south-east Queensland revealed very low genetic diversity and the 

population in this region has experienced a significant genetic bottleneck. These results have 35 

significant implications for future management, particularly in terms of augmenting populations 

through translocations or re-introducing water mice in areas where they have gone extinct.   

 



 
 

Introduction 

Genetic factors may play a critical role in species extinction (Spielman et al. 2004; Frankham 40 

2005; O’Grady et al. 2006).  The maintenance of genetic diversity enables a species to adapt to 

changing environments and avoid the negative effects of inbreeding depression through 

accumulation of deleterious mutations and loss of heterozygote advantage (Spielman et al. 

2004; Frankham 2005).  These issues can be rapidly mitigated through the restoration of gene 

flow (Lacy 1987; Ingvarsson 2001), but if populations have been separated for long periods of 45 

time, they may be highly divergent and adapted to local conditions (Moritz 1994). Restoration 

of gene flow may therefore be inappropriate and may lead to other problems such as 

outbreeding depression (Frankham et al. 2011) and loss of unique evolutionary lineages (Moritz 

2002).  As such, an understanding of the natural historical processes and recent anthropogenic 

influences shaping the genetic structure of threatened species is required to make informed 50 

conservation management decisions and efficiently allocate scarce conservation resources.   

The water mouse, Xeromys myoides Thomas, 1889, is listed in Australia as a vulnerable species 

under both Queensland and Commonwealth legislation.  This predominantly ground dwelling 

(Gynther and Janetzki 2008) and nocturnal (Van Dyck 1996) rodent occupies mangrove forests, 

freshwater lagoons, swamps and sedged coastal lakes (Magnusson et al. 1976; Van Dyck 1996, 55 

Ball 2004; Gynther 2011).  It is the only member of the genus Xeromys and its closest relative in 

Australia is the water rat, Hydromys chrysogaster (Musser and Carleton 2005). However, 

morphological and molecular evidence suggests that it is more closely related to the 'moss mice' 

(Leptomys and Pseudohydromys) of New Guinea (Rowe et al. 2008; Helgen and Helgen 2009).  

Across the nine genera in the tribe Hydromini, the water rat and water mouse are the only 60 

species that occur outside New Guinea.  Rather, both species are found in Australia and New 

Guinea; although to date, only one record exists of the water mouse in New Guinea from a 

freshwater wetland on the Bensbach River floodplain (Hitchcock 1998).  It is therefore thought 

that both species probably originated in New Guinea (Breed and Aplin 2008; Rowe et al. 2008) 



 
 

and radiated to Australia during the Pleistocene at periods of reduced sea level (Aplin 2006).  65 

The vegetation on the Torres land-bridge included extensive low-lying swamps (Torgersen et al. 

1988), which may have provided suitable habitat for rodents dependent on water.  However, the 

history of rodent exchange between New Guinea and Australia has been complex (see Rowe et 

al. 2008).   

The Australian mainland distribution of the water mouse includes coastal areas of central and 70 

south-east Queensland from Proserpine south to the Coomera River (Van Dyck and Gynther 

2003; Ball 2004), with confirmed records lacking between Cape Palmerston, south of Mackay, 

and Port Curtis near Gladstone (Ball 2004; Van Dyck and Gynther 2012; QGC 2013).  The 

species is also known offshore from Curtis Island (Brett Taylor, personal communication, 

2011), Fraser Island (DERM 2010), Bribie Island (Van Dyck and Gynther 2003; Gynther 2011), 75 

North Stradbroke Island (Van Dyck et al. 1979; Van Dyck and Durbidge 1992; Van Dyck 1996) 

and South Stradbroke Island (Van Dyck and Gynther 2003).  It has been recorded infrequently 

at widely separated sites in the Northern Territory including the Glyde, Goyder and Tomkinson 

Rivers in Arnhem Land, the South Alligator and Daly Rivers and Melville Island (Redhead and 

McKean 1975; Magnusson et al. 1976; Woinarski et al. 2000).  It is unknown whether the water 80 

mouse was once widely distributed along the northern and eastern coastline of Australia.  It also 

remains unclear whether its current disjunct distribution is historical and related to habitat 

requirements or climatic fluctuations (Russell and Hale 2009), more recent anthropogenic 

impacts (Gynther and Janetzki 2008; Gynther 2011), or simply a lack of trapping in difficult to 

access, sometimes crocodile-infested, mangrove habitats (Van Dyck 1996).  Nevertheless, the 85 

apparent absence of water mice from sites which appear suitable has led to the conclusion that 

habitat requirements for the species may be highly specific (Russell and Hale 2009).   

To date, no published study has examined the distribution of genetic variation amongst the 

regions occupied by the water mouse and broader phylogenetic analyses have only included a 

single individual (Rowe et al. 2008).  The levels of genetic exchange and hence the connectivity 90 



 
 

between populations is therefore unknown. Factors influencing the current, potentially 

fragmented, distribution of the water mouse, such as limited dispersal and barriers to gene flow, 

genetic drift and inbreeding have also not been considered. Given these considerable knowledge 

gaps and the current conservation significance of this species, the aim of this study was to 

examine the distribution of nuclear and mitochondrial DNA variation throughout the geographic 95 

range of the water mouse to infer the evolutionary history and contemporary influences on gene 

flow and provide a better understanding of the long term viability of water mouse populations in 

Australia. 

  



 
 

Materials and Methods 100 

DNA extraction and sequencing 

DNA was extracted from 47 Xeromys myoides tissue samples (tail or ear clips) from 

Queensland (Coomera region, Mackay region, Donnybrook and Gladstone region) and two 

samples (liver) from the Northern Territory (Goyder River and Arafura Swamp) in Australia 

(see Supplementary Material Table S1 for specimen details).  Large tissue samples were 105 

extracted using a salt extraction protocol (Miller et al. 1988), while small tissue samples were 

extracted using an Isolate Genomic DNA mini kit (Bioline, Alexandria, Australia) following the 

manufacturer’s protocol. 

Approximately 1000bp of the mitochondrial cytochrome b (CytB) gene was amplified for 28 

individuals spanning all five localities and 400bp of the D-loop gene was amplified for 24 110 

individuals (see Table 1 for primer details).  One nuclear marker was also sequenced: 300bp of 

the Zona Pellucida 3 glycoprotein (ZP3) for eight individuals from across the sampled range.  

Polymerase chain reactions (PCR) were performed in a Mastercycler® epgradient S (Eppendorf, 

Hamburg, Germany).  The total volume of the sequencing reaction was 25µl and contained 1µl 

of both the forward and reverse primers (Geneworks, Adelaide, Australia) at a concentration of 115 

10µM, 5µl of Bioline 5x MyTaq Red reaction buffer, 0.25µl of Bioline MyTaq HS DNA 

polymerase, between 0.5 and 2µl of the previously extracted DNA and the remaining volume in 

dH2O. The following PCR cycling protocol was used: 94°C for 3 min, 36 cycles of 94°C for 15 

sec, 50°C for CytB or 55°C for D-loop and ZP3 for 15 sec and 72°C for 30 sec, final extension 

at 72°C for 5 min and then hold at 15°C.  To check for presence and quality of amplification, 120 

PCR products were then electrophoresed on a 1.5% TBE agarose gel stained with Gel Red. 

PCR products were purified using an Isolate PCR and Gel Kit (Bioline, Alexandria, Australia) 

following manufacturer’s guidelines and eluted into 15µl of elution buffer.  Purified PCR 

product was then amplified in a sequencing reaction with a total volume of 20µl.  This 



 
 

contained 1 to 10µl of PCR product depending on its estimated concentration, 1µl of the 125 

forward primer at a concentration of 3.2µM, 3µl of 5x Big Dye sequencing buffer, 0.5µl of Big 

Dye, with remaining volume composed of dH2O.  The sequencing reaction protocol was the 

same for all regions amplified and consisted of 94°C for 5 min, 30 cycles of 94°C for 10 sec, 

50°C for 5 sec and 60°C for 4 min and a final extension at 15°C for 10 mins.  A standard 

EDTA/ethanol precipitation protocol was used to prepare DNA for sequencing.  Samples were 130 

sequenced in the Queensland University of Technology’s (QUT) Molecular Genetics Research 

Facility on an ABI 3500 sequencing platform.   

Phylogenetic and phylogeographic analyses 

For all analyses, individuals were grouped into broader sampling localities.  The ‘Coomera 

region’ consisted of samples from Coomera and Jacobs Well and the ‘Mackay region’ consisted 135 

of samples from Sarina, Cape Hillsborough, Bucasia and Cape Palmerston National Park.  

Gladstone and Agnes Water individuals were grouped as ‘Gladstone region’ for microsatellite 

analyses (Table S1 in the Supplementary Material); however, only the Agnes Water individual 

was sequenced for the mitochondrial genes.   Chromatograms and sequences for the three genes 

were aligned by eye using BioEdit Version 7.0.8 (Hall 1999).  Further analyses of the ZP3 gene 140 

sequences were not conducted as identical sequences were obtained for all eight individuals 

spanning the five sampling localities.  MEGA version 5.1 (Tamura et al. 2011) was used to 

obtain uncorrected pairwise p-distances for the CytB and D-loop sequences.  Networks were 

generated for both CytB and D-loop Xeromys myoides sequences using TCS version 1.21 

(Clement et al. 2000).  A statistical parsimony approach as described by Templeton (1992) was 145 

used and a 95% connection limit was implemented.  The optimal model of molecular evolution 

for phylogenetic analysis of the CytB data was found using jModelTest2 version 2.1.4 (Guindon 

and Gascuel 2003; Darriba et al. 2012).  MrBayes version 3.2 (Ronquist et al. 2012) was 

employed for Bayesian inference of phylogenies using the Metropolis-coupled Markov Chain 

Monte Carlo (MCMC) method (Geyer 1991).  The program was run under the General Time 150 



 
 

Reversible model gamma distributed with Invariant Sites (+I+ Γ) for 500000 generations.  

Model parameters were α = 39.02, proportion of invariant sites = 0.544, substitution rates R(a) = 

0.046, R(b) = 0.092, R(c) = 0.0667, R(d) = 0.139, R(e) = 0.772 and R(f) = 0.009.  Empirical base 

frequencies were A = 0.31, C = 0.31, G = 0.12 and T = 0.26.   The final CytB tree was then 

visualised and edited in FigTree version 1.4 (Rambaut 2012).  D-Loop sequences were excluded 155 

from the broader phylogenetic analyses as sequences for out-group taxa were unavailable.  

Specimen details and GenBank accession numbers can be found in Supplementary Material 

Table S1.  

 

Microsatellite amplification 160 

Eight polymorphic microsatellite loci were developed and optimised (Table 2).  Next generation 

sequencing was conducted on one individual (sample IG016 - See Supplementary Material 

Table S1.) using an Ion Torrent Personal Genome Analyser (Life Technologies, Germany).  An 

Ion Torrent library was produced following the Ion Xpress Plus gDNA Fragment Library 

Preparation protocol.  The library was then purified and prepared for sequencing. The sample 165 

was loaded onto the Ion 314 chip and sequenced on the Personal Genome Analyser.  The 

sequence data obtained from the torrent run was checked for quality by excluding low quality 

sequences and trimming ambiguous bases.  These data were then used to locate a number of 

candidate regions suitable for microsatellite analysis.  The program Msat commander version 

1.0.8 beta (Faircloth 2008) was used to identify loci consisting of tetra-nucleotide repeats and 170 

amplifying at an annealing temperature of 60oC using the default settings.  Fluorescently 

labelled reverse primers were obtained from Applied Biosystems, while forward primers were 

produced by Geneworks (Adelaide).  Eight primer pairs matching these criteria were initially 

trialled for successful amplification and polymorphism for 25 Xeromys myoides individuals 

from across all five sampling regions.  Of the initial eight loci, four were abandoned due to poor 175 



 
 

amplification or monomorphism.  A further eight primer pairs were selected of which four were 

again excluded.  This resulted in the final eight polymorphic loci employed in the present study.  

These loci were then amplified for the remaining Xeromys myoides individuals.   

A Qiagen multiplex kit (Qiagen, Dusseldorf, Germany) was used for microsatellite 

amplification.  This allowed several loci to be amplified in a single reaction.  A primer mix was 180 

prepared containing the forward and fluorescently labelled reverse primers, diluted in TE buffer, 

so that each primer was at a final concentration of 2µM.  Microsatellite fragments were 

amplified in a reaction containing 6.25µl of 2x Qiagen multiplex master mix, 2.5µl of Q 

Solution, 1.25µl of primer mix, 4µl of Rnase free H2O and 1µl of the previously extracted DNA.  

The following PCR cycler protocol was used: 95°C for 15 min, 30 cycles of 94°C for 30 sec, 185 

62°C 90 sec and 72°C for 1 min, followed by 60°C for 30 min and ending with a hold at 15°C 

for 15 min.  PCR products were run on a 1.5% TBE agarose gel stained with Gel Red using an 

electrophoresis rig to check for successful amplification.  PCR products were prepared for 

fragment analysis in a dilution containing 3µl of PCR product in 12µl of HiDi (Applied 

Biosystems) and 1µl of GeneScan™ 600Liz (Applied Biosystems) sizing standard was added.  190 

Samples were then run on an ABI 3500 sequencing platform in the QUT Molecular Genetics 

Research Facility.   

Population genetics analyses   

A total of 49 Xeromys myoides individuals were included in the population genetics analyses.  

Microsatellite chromatograms were viewed on GeneMapper® (Applied Biosystems) software 195 

and allele sizes were scored manually.  Tests for Linkage Disequilibrium (LD) and departure 

from Hardy-Weinberg Equilibrium (HWE) were implemented in GENEPOP version 4.2 

(Raymond and Rousset 1995, Rousset 2008) using the MCMC method (defaults settings of: 

1000 dememorizations, 100 batches, 1000 iterations).  A comparison across populations 

revealed that locus pairs Xmyo1a and Xmyo10 (p<0.021), and Xmyo1a and Xmyo14 (p<0.019) 200 



 
 

had a significant signature of linkage disequilibrium (LD).  Xmyo1a was therefore excluded 

from further analyses.   Fstat version 2.9.3 (Goudet 1995) was used to calculate Fis for Coomera 

and Mackay regions only as other regions had insufficient sample size.  Private alleles (alleles 

unique to a particular region) were identified by eye from the raw data and Arlequin version 

3.11 (Excoffier et al. 2005) was used to produce estimates of expected and observed 205 

heterozygosity and pairwise Fst between Coomera and Mackay regions.   

BOTTLENECK version 1.2.02 (Cornuet and Luikart 1996) was used to establish if populations 

had experienced a recent decline in population size.  In this instance, ‘recent’ was defined as 

2Ne-4Ne generations depending on the mutation rate of the loci being studied and the severity of 

the bottleneck (Cornuet and Luikart 1996).  The program was run for 1000 iterations under the 210 

stepwise mutation model and a one tailed Wilcoxin test was performed as recommended for 

microsatellite data (Piry et al. 1999).  This test was only run on Mackay and Coomera area 

samples due to insufficient sample sizes in other regions.   

A Bayesian clustering approach implemented in STRUCTURE version 2.3.2 (Pritchard et al. 

2000) was used to estimate the number of populations (K) in a sample and to assign individuals 215 

to one or more of these populations (k). Ten runs of K = 1 to 10 were performed at 100000 

MCMC repetitions and 20000 burn-in period using no prior location information, independent 

allele frequencies and a model of admixture. The posterior probability was then calculated for 

each value of K using the estimated log-likelihood to choose the optimal number of populations. 

The number of populations (K) was estimated from the point where the mean posterior 220 

probability Ln Pr (X|K) reached a plateau.  The Evanno method (Evanno et al. 2005) was also 

employed to confirm this via the website ‘STRUCTURE HARVESTER’ (Earl 2012).  The 

program CLUMPP (Jakobsson and Rosenberg 2007) was used to produce a best match 

amalgamation of the ten iterations of the STRUCTURE analysis using the default settings.  

Final plots from these data were produced using the program Distruct (Rosenberg 2004).  A 225 



 
 

Factorial Correspondence Analysis (FCA) was also conducted using GENETIX version 4.05 

(Belkhir et al. 1996).   

 

  



 
 

Results 230 

Phylogenetic and phylogeographic analyses 

Eight individuals spanning the range from the Northern Territory to south-east Queensland were 

sequenced for the ZP3 nuclear gene. However, these sequences were identical and, as they 

spanned the species’ entire known distribution, it was determined that further investigation of 

this gene would not be informative.   235 

A total of 24 individuals from throughout the range of the water mouse were sequenced for 

mitochondrial DNA D-loop and seven haplotypes were found (GenBank accession numbers 

KM582160 to KM582166). Uncorrected p-distances between Xeromys haplotypes ranged from 

0.3% to 1.4% (Table S2 in the Supplementary Material).  

The CytB dataset consisted of 28 Xeromys myoides samples from across the geographic range. 240 

A total of six CytB haplotypes were found among Xeromys (GenBank accession numbers 

KM603491 to603496). CytB p-distances between haplotypes ranged from 0.1% to 0.6% among 

Xeromys and 0.4% to 1.7% among Hydromys (Table S2 in the Supplementary Material).  The 

Bayesian inference phylogeny generated using the CytB dataset revealed that Xeromys samples 

formed a well-supported monophyletic clade (Fig. 1), with Pseudohydromys ellermani 245 

positioned as sister-taxon.  All Australian Hydromys also formed a well-supported clade to the 

exclusion of the New Guinean Hydromys.  No insertions or deletions were identified in any of 

the sequence data.       

The networks produced from the mitochondrial DNA (CytB, D-loop) sequence data (Fig. 2) 

both consist of a central haplotype shared between Donnybrook and Mackay area individuals.  250 

In the CytB network, the majority of Mackay and Coomera area individuals fall in this central 

haplotype.  However, the D-loop network shows additional structure with unique haplotypes 

present in the Coomera and Mackay regions.  Northern Territory individuals occurred as tip 



 
 

haplotypes in both networks, with the Goyder River individual being the most divergent.  The 

key difference between the two networks is the position of the Agnes Water sample, which 255 

occurs centrally in the CytB network, but as a tip haplotype in the D-loop.  Most strikingly, the 

geographically proximate Goyder River and Arafura Swamp individuals from the Northern 

Territory are relatively widely separated (3-4 base pairs) in the network. 

Population genetic analyses 

Allele frequencies for microsatellite data are given in Supplementary Material Table S3.  260 

Descriptive statistics for the microsatellite data are given in Table 3. The Mackay area had the 

highest mean number of alleles.  All sites except the Gladstone region had at least one private 

allele (alleles unique to a specific region), but they were most common in the Mackay area.  The 

Coomera region had only two private alleles across all eight loci.  Most alleles were distributed 

across all regions sampled.  Allele sizes often varied by only two or three tetra-repeats and were 265 

rarely different by more than one or two repeats within a single region.  The mean Fis value for 

the Coomera area indicated a heterozygote excess and for the Mackay region a heterozygote 

deficiency.  Mean observed heterozygosity (Ho) was highest in Mackay.  Mean expected 

heterozygosity (He) was highest in Coomera.          

Across populations only the Mackay region showed significant departure from Hardy-Weinberg 270 

equilibrium (HWE) at loci Xmyo8 (p<0.0002), Xmyo10 (p<0.002) and Xmyo14 (p<0.0008).  A 

pairwise estimate of Fst revealed significant differentiation between Coomera and Mackay areas 

(Fst = 0.39, p<0.05).  The BOTTLENECK analysis revealed a significant difference (p<0.031) 

from expected heterozygosity relative to the number of alleles found in the Coomera region, 

indicating that the population may have been subject to a recent bottleneck, while the Mackay 275 

area showed no signature (p>0.28). 

The STRUCTURE analysis identified two clusters (K = 2) across the mainland Australian range 

of the water mouse (Fig. 3). This was supported by both the Evanno method (Evanno et al. 



 
 

2005) and a plateau in the rate of change in mean posterior probability Ln Pr (X|K).  A 

STRUCTURE bar plot showing three clusters was also produced as it provided insight into sub-280 

structuring that was not evident in the two cluster plot (Fig. 3).  In the K = 2 plot, the Coomera 

region appeared to form a distinct cluster and the Mackay area and Northern Territory samples 

formed another.  Both Donnybrook and Gladstone region individuals consisted of varying 

degrees of admixture between the two clusters.  The K = 3 plot produced a similar result.  The 

Coomera area still formed a distinct cluster; although, admixture was prominent in the other 285 

regions.   

The FCA plot (Fig. 4) revealed clustering based on sampling region with minimal overlap 

between groups.  Factor one described 48.5%, Factor two 22.9%, Factor three 22.2 % and 

Factor four (not plotted) explained 19.4% of the variation between all samples. 

 290 

  



 
 

Discussion 

Phylogenetic analyses  

We found very low levels of mitochondrial DNA divergence over the known Australian range 

of the water mouse.  The CytB sequences revealed a small amount of divergence between 295 

Queensland and the Northern Territory, but shared haplotypes were present across the entire 

sampled Queensland range.  Phylogenetic analyses indicated that Xeromys was monophyletic 

(Fig. 1).  Xeromys and moss mice (Leptomys and Pseudohydromys) were positioned as sister-

taxa to Hydromys and Parahydromys.  Our results differ to that reported by Rowe et al. (2008), 

who found that Xeromys, Hydromys and Pseudohydromys formed a clade to the exclusion of 300 

Leptomys. Their analysis consisted of only a single water mouse and two Hydromys individuals, 

but they included a number of nuclear genes which may have allowed better resolution of 

deeper level relationships. The single nuclear gene sequenced in the current study (ZP3) showed 

no evidence of differentiation within Xeromys.  

Relative levels of divergence and monophyly across the sampled range strongly support the 305 

current designation of Xeromys myoides as a single species (e.g. maximum of 0.5% CytB 

divergence in Xeromys relative to ~6% between different Melomys species [Bryant et al. 2011] 

and ~7-10% between Pseudomys species [Rowe et al. 2011]).  Preliminary morphological 

examinations also suggest that water mice from Queensland and Northern Territory cannot be 

distinguished (Steve Van Dyck, unpublished data).  However, broader sampling including 310 

island representatives may provide further insight.   

Phylogeographic relationships and historical biogeography 

Given the limited divergence among water mice assayed in the present study and their apparent 

sister relationship to Pseudohydromys of New Guinea (Rowe et al. 2008), water mice probably 

diverged from their moss mice ancestors outside of Australia. Aplin (2006) hypothesised that 315 



 
 

the water mouse probably arrived in Australia from New Guinea during the Pleistocene 

(~2.6myr – 12kyr; Gibbard et al. 2010) during periods of reduced sea level. To test this 

hypothesis, the relationship between Australian and New Guinean individuals would need to be 

established, but there is only one museum record (Hitchcock 1998) and no tissue currently 

available. 320 

The limited divergence found in the current study was unexpected considering the apparently 

disjunct (and broad) distribution of Xeromys in Australia.  This suggests water mice have 

recently expanded throughout their range.  Populations have either not been isolated long 

enough for divergence to arise (Avise et al. 1987) or are more connected than current trapping 

records would suggest.  Hydromys chrysogaster also exhibited low levels of divergence in the 325 

current study over large geographic distances (0.5% at CytB from Tully in north Queensland to 

Torrens in South Australia), providing support for a probable recent range expansion throughout 

Australia.   

The microsatellite data also provide further support for a recent range expansion of the water 

mouse throughout Australia.  Microsatellites are rapidly evolving, non-coding repeat sequences. 330 

Under the Stepwise Mutation Model (SMM) microsatellites evolve by either dropping or 

gaining a repeat number from the sequence.  Alleles of a similar size would therefore be 

expected to be recently diverged (Selkoe and Toonen 2006).  The microsatellites examined here 

exhibited shared alleles across the entire distribution and repeat numbers differed only 

marginally (generally only one repeat), both within and between regions.  The microsatellite 335 

mutation process can be more complex than explained by the SMM alone and size homoplasy 

(the same sized allele arising independently between regions) could explain the shallow 

divergence found in this study (Selkoe and Toonen 2006), particularly in the case of the shared 

alleles found between the Northern Territory and Queensland.  However, given that the patterns 

seen in the microsatellites are similar to those found in the mitochondrial DNA analysis, it 340 

seems unlikely that size homoplasy has had a large impact in the present study. 



 
 

Coalescence principles (Kingman 1982) indicate that the centrally located Queensland 

haplotypes found in both networks (Fig. 2) are ancestral to those on the tips.  This suggests 

water mice most likely initially colonised Australia via Queensland. Although, given their 

current absence from trapping records in north Queensland, it remains unclear whether this was 345 

across the Torres land bridge or a rare rafting or translocation event into central-east 

Queensland.  Both networks suggested that the Northern Territory Arafura Swamp individual 

has diverged from an ancestral Queensland haplotype (Fig. 2). However, as only two samples 

from the Northern Territory were available, more detailed sampling is required.  This may yield 

further haplotypes, providing a link to the Northern Territory’s shared origins with Queensland 350 

and explaining the relationship between Arafura Swamp and Agnes Water haplotypes.  

Under a scenario of a simple radiation from a single point of entry, geographically proximal 

locations are expected to be most similar to each other (Wright 1943; Slatkin 1993). However, 

the mitochondrial DNA haplotypes of the two Northern Territory individuals were on opposing 

tips of the networks (Fig. 2), and their origins most likely lie in two independent colonisation 355 

events.   

These conclusions are dependent on the presence of water mice outside of their current known 

range. Nevertheless, this appears to be the most parsimonious explanation for the distribution of 

genetic variation in the current study.  Without broader sampling of north Queensland, the 

Northern Territory and New Guinea it is difficult to draw further conclusions about the 360 

colonisation patterns of the water mouse in Australia.   

Current population structure and implications for management 

While the exact mode of colonisation and the evolutionary relationships among sub-populations 

can only be hypothesised, our data suggest that populations are genetically similar and recently 

diverged across the entire Australian range.  This has significant implications for the way this 365 

species is managed in the future.  Water mice consist of a single Evolutionarily Significant Unit 



 
 

(ESU) as defined by Moritz (1994). They are monophyletic across geographic regions and do 

not appear to be divergent at nuclear loci (ZP3 sequence identical from Queensland to Northern 

Territory; minimal divergence in nuclear microsatellites).  The presence of a limited amount of 

structuring in the D-loop and microsatellites suggests that populations may have very recently 370 

started to diverge (Avise et al. 1987).  Each geographic region can be differentiated in the FCA 

plot, with minimal overlapping individuals between regions (Fig. 4), and unique D-loop 

haplotypes are present in most regions.  This may warrant designation of distinct Management 

Units (MUs) (Moritz 1994) in Queensland, however, further study is required to determine if 

populations are demographically distinct or if other distinct MUs exist.   375 

Genetic diversity was much greater in the Mackay area than the Coomera region.  While capture 

records indicate that Xeromys are relatively easily trapped in Mackay (Ball 2004), the main 

Coomera population sampled here has since gone extinct (Van Dyck et al. 2006). The 

population in the Mackay region showed significant departure from Hardy-Weinberg 

Equilibrium at several loci and may be evidence of a Wahlund effect and the STRUCTURE 380 

(K=3) plot (Fig. 3) suggests that the most northerly sampling localities may represent distinct 

sub-populations potentially isolated from other Mackay sampling localities.  If these sub-

populations are small and isolated, they could be subject to rapid loss of genetic variability 

through increased genetic drift and inbreeding (Frankham 2005).  The largely positive Fis values 

indicate an excess of homozygotes, which can occur as a result of inbreeding within sub-385 

populations (Wright 1949).  Considering the frequency with which mangrove habitats are now 

altered or removed for development (Valiela et al. 2001), there is a real risk of populations 

becoming more isolated throughout much of the water mouse’s current range.   

The Coomera population showed the least structure and variability of all regions sampled, but 

sampling was limited to a smaller geographic area than in the Mackay region (three sample sites 390 

near Coomera separated by approximately 10km compared with five sample sites around 

Mackay over about 80km).  Analyses suggest that the low genetic variability may have resulted 



 
 

from a genetic bottleneck and this is consistent with what is known about the Coomera area 

population, as these samples were obtained during a recent population decline (Steve Van Dyck, 

personal communication, 2012).  Microsatellite variability in the Coomera population was lower 395 

than in the Mackay region from a similar sample size; only two alleles were present at each 

locus and alleles were fixed at two loci.  A large range of threats to this species’ persistence 

have been identified (Gynther and Janetzki 2008; DERM 2010; Gynther 2011; Van Dyck and 

Gynther 2012) which may have contributed to the decline of the population in the Coomera 

area.  Pressure from loss of habitat and increased predation by feral predators due to proximity 400 

to large urban centres (Gynther and Janetzki 2008) may have resulted in an initial decline, 

accelerating the process of genetic drift and reducing fitness of the population as whole.  Only 

small amounts of migration would be required to mitigate these negative effects (Ingvarsson 

2001).  However, isolation by urbanisation associated with the cities of Brisbane and the Gold 

Coast, together with extensive modification of mangrove habitat in this region, probably 405 

completely halted any migration into this population from surrounding areas.  Coomera is 

considered to be the southernmost limit within the species’ mainland distribution (Van Dyck 

and Gynther 2003, 2012) and this could have also impacted on migration rates over an historical 

timeframe, particularly if the area was initially colonised by only a few individuals.  The 

presence of a unique D-loop haplotype provides some support for this conclusion and indicates 410 

populations may have started to diverge prior to anthropogenic impacts.  

Despite a sample of only three individuals, the Donnybrook population appears to be more 

variable than the one in the Coomera region.  All three individuals were from the same small, 

relatively isolated patch of mangroves yet still possessed greater allelic diversity than all of the 

Coomera area samples combined.  Gynther (2011) proposes that Pumicestone Passage is a 415 

stronghold for the species in south-east Queensland and the limited data available in the present 

study suggest that the Donnybrook population is not suffering from the same lack of genetic 

variability found in the Coomera region. If remnant populations are large and sufficient habitat 



 
 

exists in Donnybrook, this area may provide a valuable source of individuals for re-introduction.  

Considering that divergence between water mice populations is so low, the use of translocations 420 

could be implemented safely without risk of loss of unique lineages or outbreeding depression 

(Frankham et al. 2011).  Particularly in localised areas, translocation could certainly be 

considered as an option to augment existing populations, and to reduce the chance of inbreeding 

depression in small isolated sub-populations.  However, given scarce conservation resources, 

the question is whether this is the most important issue facing the species’ immediate 425 

persistence. In the short term, greater benefit may come from concentrating on more immediate 

threats to water mouse persistence such as clearing of mangrove habitat and feral predators 

(Gynther 2011).   

Future directions  

Our results indicate that Australian water mice constitute only a single species and are recent 430 

arrivals on an evolutionary timescale.  Inclusion of New Guinean individuals (if they can be 

located) would prove invaluable in further resolving the phylogeography of the species.  

Furthermore, broad sampling is required to define the boundaries of separate management units 

in Queensland and to establish if gaps are truly present across the species’ distribution.  Future 

genetic studies may benefit from the inclusion of MHC genes to provide insight into levels of 435 

functional genetic diversity important for immune response and critical for the persistence of 

endangered species (Ellegren et al. 1993, Gutierrez-Espeleta et al. 2001).  
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Table 1: Primer sequences and references for the three genes sequenced. 

 620 

Table 2: Characteristics of the eight microsatellite loci developed for Xeromys myoides. 

 

Table 3: Descriptive statistics for the microsatellite data.  He, Ho and Fis were only 
calculated for the Coomera and Mackay regions as sample size limited the utility of these 
measures for other regions. 625 

 

Figure 1: Bayesian inference phylogeny generated from the CytB dataset using a General 
Time Reversible model gamma distributed with Invariant Sites (+I+ Γ).  Nodes are 
marked with their Bayesian posterior probabilities.  Unique haplotypes are as indicated in 
the names of each individual.  The scale bar indicates the number of substitutions per site.   

 

Figure 2: Statistical parsimony network analysis showing the relationship between 
haplotypes for Xeromys myoides. Each line indicates a one base pair difference.  Dots on 
branches represent putative nucleotide changes between haplotypes.  Each region is 
assigned an unique identifying pattern and the frequency of each haplotype is indicated by 
its size.  Each haplotype is coded by the percentage contribution from each region.  The 
network for CytB is shown on the bottom left and for D-Loop on the right.  

 

Figure 3: Results of the structural analysis showing estimated membership coefficients for 
all individuals (n=49) for both two and three clustered plots. Each individual is 
represented by a single vertical column divided into colours representing its proportional 
membership of each cluster.  Samples are grouped by pre-determined localities and 
divided by a thin black line.  Samples are also ordered left to right from south to north.   

 

Figure 4: Results of the Factorial Correspondence Analysis showing values for all 
individuals and a population average.  Coomera area (n=20), Donnybrook (n=3), Agnes 
Water/Gladstone (n=2), Mackay area (n=22) and the Northern Territory (n=2).  Each 
region formed a distinct cluster and is outlined and labelled.  Each axis represents one 
factor (numbered to match the corresponding axis) that explains a component of the 
variability between samples.    


