17 research outputs found

    Discontinuities in numerical radiative transfer

    Full text link
    Observations and magnetohydrodynamic simulations of solar and stellar atmospheres reveal an intermittent behavior or steep gradients in physical parameters, such as magnetic field, temperature, and bulk velocities. The numerical solution of the stationary radiative transfer equation is particularly challenging in such situations, because standard numerical methods may perform very inefficiently in the absence of local smoothness. However, a rigorous investigation of the numerical treatment of the radiative transfer equation in discontinuous media is still lacking. The aim of this work is to expose the limitations of standard convergence analyses for this problem and to identify the relevant issues. Moreover, specific numerical tests are performed. These show that discontinuities in the atmospheric physical parameters effectively induce first-order discontinuities in the radiative transfer equation, reducing the accuracy of the solution and thwarting high-order convergence. In addition, a survey of the existing numerical schemes for discontinuous ordinary differential systems and interpolation techniques for discontinuous discrete data is given, evaluating their applicability to the radiative transfer problem

    Assessment of the CRD approximation for the observer's frame RIII redistribution matrix

    Full text link
    Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A

    The impact of angle-dependent partial frequency redistribution on the scattering polarization of the solar Na i D lines

    Full text link
    The long-standing paradox of the linear polarization signal of the Na i D1 line was recently resolved by accounting for the atom's hyperfine structure and the detailed spectral structure of the incident radiation field. That modeling relied on the simplifying angle-averaged (AA) approximation for partial frequency redistribution (PRD) in scattering, which potentially neglects important angle-frequency couplings. This work aims at evaluating the suitability of a PRD-AA modeling for the D1 and D2 lines through comparisons with general angle-dependent (AD) PRD calculations, both in the absence and presence of magnetic fields. We solved the radiative transfer problem for polarized radiation in a one-dimensional semi-empirical atmospheric model with microturbulent and isotropic magnetic fields, accounting for PRD effects, comparing PRD-AA and PRD-AD modelings. The D1 and D2 lines are modeled separately as two-level atomic system with hyperfine structure. The numerical results confirm that a spectrally structured radiation field induces linear polarization in the D1 line. However, the PRD-AA approximation greatly impacts the Q/I shape, producing an antisymmetric pattern instead of the more symmetric PRD-AD one, while presenting a similar sensitivity to magnetic fields between 10 and 200 G. Under the PRD-AA approximation, the Q/I profile of the D2 line presents an artificial dip in its core, which is not found for the PRD-AD case. We conclude that accounting for PRD-AD effects is essential to suitably model the scattering polarization of the Na i D lines. These results bring us closer to exploiting the full diagnostic potential of these lines for the elusive chromospheric magnetic fields

    Formal solutions for polarized radiative transfer. III. Stiffness and instability

    Full text link
    Efficient numerical approximation of the polarized radiative transfer equation is challenging because this system of ordinary differential equations exhibits stiff behavior, which potentially results in numerical instability. This negatively impacts the accuracy of formal solvers, and small step-sizes are often necessary to retrieve physical solutions. This work presents stability analyses of formal solvers for the radiative transfer equation of polarized light, identifies instability issues, and suggests practical remedies. In particular, the assumptions and the limitations of the stability analysis of Runge-Kutta methods play a crucial role. On this basis, a suitable and pragmatic formal solver is outlined and tested. An insightful comparison to the scalar radiative transfer equation is also presented

    Numerical solutions to linear transfer problems of polarized radiation

    No full text
    Context. Numerical solutions to transfer problems of polarized radiation in solar and stellar atmospheres commonly rely on stationary iterative methods, which often perform poorly when applied to large problems. In recent times, stationary iterative methods have been replaced by state-of-the-art preconditioned Krylov iterative methods for many applications. However, a general description and a convergence analysis of Krylov methods in the polarized radiative transfer context are still lacking. Aims. We describe the practical application of preconditioned Krylov methods to linear transfer problems of polarized radiation, possibly in a matrix-free context. The main aim is to clarify the advantages and drawbacks of various Krylov accelerators with respect to stationary iterative methods and direct solution strategies. Methods. After a brief introduction to the concept of Krylov methods, we report the convergence rate and the run time of various Krylov-accelerated techniques combined with different formal solvers when applied to a 1D benchmark transfer problem of polarized radiation. In particular, we analyze the GMRES, BICGSTAB, and CGS Krylov methods, preconditioned with Jacobi, (S)SOR, or an incomplete LU factorization. Furthermore, specific numerical tests were performed to study the robustness of the various methods as the problem size grew. Results. Krylov methods accelerate the convergence, reduce the run time, and improve the robustness (with respect to the problem size) of standard stationary iterative methods. Jacobi-preconditioned Krylov methods outperform SOR-preconditioned stationary iterations in all respects. In particular, the Jacobi-GMRES method offers the best overall performance for the problem setting in use. Conclusions. Krylov methods can be more challenging to implement than stationary iterative methods. However, an algebraic formulation of the radiative transfer problem allows one to apply and study Krylov acceleration strategies with little effort. Furthermore, many available numerical libraries implement matrix-free Krylov routines, enabling an almost effortless transition to Krylov methods
    corecore