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ABSTRACT

Context. The polarization signals produced by the scattering of anistropic radiation in strong resonance lines encode important
information about the elusive magnetic fields in the outer layers of the solar atmosphere. An accurate modeling of these signals is a
very challenging problem from the computational point of view, in particular when partial frequency redistribution (PRD) effects in
scattering processes are accounted for with a general angle-dependent treatment.
Aims. We aim at solving the radiative transfer problem for polarized radiation in nonlocal thermodynamic equilibrium conditions,
taking angle-dependent PRD effects into account. The problem is formulated for a two-level atomic model in the presence of arbitrary
magnetic and bulk velocity fields. The polarization produced by scattering processes and the Zeeman effect is considered.
Methods. The proposed solution strategy is based on an algebraic formulation of the problem and relies on a convenient physical
assumption, which allows its linearization. We applied a nested matrix-free GMRES iterative method. Effective preconditioning is
obtained in a multifidelity framework by considering the light-weight description of scattering processes in the limit of complete
frequency redistribution (CRD).
Results. Numerical experiments for a one-dimensional (1D) atmospheric model show near optimal strong and weak scaling of the
proposed CRD-preconditioned GMRES method, which converges in few iterations, independently of the discretization parameters. A
suitable parallelization strategy and high-performance computing tools lead to competitive run times, providing accurate solutions in
a few minutes.
Conclusions. The proposed solution strategy allows the fast systematic modeling of the scattering polarization signals of strong
resonance lines, taking angle-dependent PRD effects into account together with the impact of arbitrary magnetic and bulk velocity
fields. Almost optimal strong and weak scaling results suggest that this strategy is applicable to realistic 3D models. Moreover, the
proposed strategy is general, and applications to more complex atomic models are possible.
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1. Introduction

The magnetic field plays a key role in the physics of the solar
chromosphere and transition region, but determining its intensity
and orientation in these hot and dynamic layers is a notoriously
difficult task. The standard techniques that are routinely applied
at the photospheric level are of reduced utility for detecting the
elusive magnetic fields in these external regions, and new tai-
lored diagnostic methods are urgently needed. A promising way
for investigating the magnetism of the chromosphere and tran-
sition region is to exploit the magnetic sensitivity of the linear
polarization signals produced by the scattering of anisotropic
radiation (scattering polarization) in strong resonance lines (e.g.,
Trujillo Bueno 2014; Trujillo Bueno et al. 2017). Spectral lines
of particular interest are, for instance, H I Ly-α, Mg II k, Ca II
K, Ca I 4227, and Na I D2. The scattering polarization sig-
nals of these lines generally show broad profiles with extended
wings (e.g., Gandorfer 2000, 2002; Kano et al. 2017) and
are sensitive to the presence of weak magnetic fields through
the Hanle and magneto-optical effects (e.g. Alsina Ballester
et al. 2017). The Hanle effect operates in the core of the line

(e.g., Landi Degl’Innocenti & Landolfi 2004), while magneto-
optical effects operate in the wings (e.g., del Pino Alemán et al.
2016; Alsina Ballester et al. 2016). Complementary information
can be obtained from the circular polarization signals produced
by the well-known Zeeman effect. The possibility of exploiting
the combined action of the Hanle, magneto-optical, and Zeeman
effects in strong resonance lines to investigate the magnetism of
the outer solar atmosphere is receiving increasing attention by
the scientific community, as testified by the recent efforts from
both the observational and theoretical point of view (e.g., Štěpán
et al. 2015; Kano et al. 2017; Alsina Ballester et al. 2018; Trujillo
Bueno et al. 2018; Ishikawa et al. 2021).

In order to correctly model these scattering polarization sig-
nals, it is essential to take frequency correlations between the
incoming and outgoing radiation in the scattering processes into
account, that is, partial frequency redistribution (PRD) effects
(e.g., Faurobert-Scholl 1992; Holzreuter et al. 2005; Belluzzi &
Trujillo Bueno 2012; Belluzzi et al. 2012; Supriya et al. 2014).
Moreover, deterministic bulk velocity fields in the solar atmo-
sphere must also be considered, because they can significantly
modify scattering polarization (e.g., Carlin et al. 2012, 2013). We
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recall that scattering polarization is intimately related to the geo-
metrical properties (i.e., the anisotropy) of the radiation field that
pumps the atoms. It therefore becomes apparent that a general
angle-dependent treatment of PRD effects, without introducing
simplifying assumptions, such as the angle-averaged one (e.g.,
Rees & Saliba 1982; Leenaarts et al. 2012; Alsina Ballester et al.
2017), can be essential for an accurate modeling (Janett et al.
2021a). When angle-dependent PRD effects are accounted for,
the numerical modeling of scattering polarization signals results
in an extremely challenging computational problem with sig-
nificant memory requirements. Solving the discretized radiative
transfer (RT) problem for polarized radiation within a hetero-
geneous and anisotropic medium is a highly coupled vectorial
problem in high dimensions (up to seven for the 3D case).
This ambitious task requires the development and application
of scalable and efficient computational strategies and the use of
last-generation supercomputers.

A remarkable effort has already been made in that direc-
tion. Nagendra et al. (2002) and Sampoorna et al. (2008, 2017)
proposed solution strategies for the angle-dependent PRD prob-
lem for a two-level atom in Hanle and Hanle-Zeeman regimes,
respectively. Sampoorna & Nagendra (2015) developed an angle-
dependent PRD RT code capable of including vertical bulk
velocities. Supriya et al. (2013) solved the angle-dependent PRD
problem for an atomic model with hyperfine structure in the non-
magnetic case, while Nagendra et al. (2020) extended that work
to the incomplete Paschen–Back effect regime. Finally, del Pino
Alemán et al. (2020) modeled the Mg II h & k spectral lines
including angle-dependent PRD effects, considering a three-
term atom. For computational simplicity, the angle-dependent
PRD calculations presented in the aforementioned works only
considered homogeneous 1D atmospheric models and/or axial
symmetry. It is worth mentioning the work of Anusha &
Nagendra (2011, 2012), who pioneered angle-dependent PRD
calculations in multidimensional test atmospheric models. A
comprehensive review of most of these works is given by
Nagendra (2019).

In this article, we first reframe the PRD RT problem for
polarized radiation as a linear system by using a suitable phys-
ical assumption. Using the 1D case as model problem, we then
apply a scalable matrix-free Krylov approach providing a novel
preconditioning technique, which is based on the simplifying
assumption of complete frequency redistribution (CRD) for the
modeling of scattering processes. This strategy provides fast and
accurate solutions that allow for an extensive and detailed model-
ing of the considered scattering polarization signals. The article
is organized as follows: in Sect. 2, the RT problem for polar-
ized radiation is introduced and described. In Sect. 3, we present
the model problem considered in this work, while in Sect. 4 we
present its discretization along with a convenient algebraic for-
mulation. In Sect. 5, we describe the solution strategy and the
preconditioning technique. In Sect. 6, scaling and convergence
numerical experiments, as well as synthetic emergent Stokes
profiles are reported. Finally, Sect. 7 provides remarks and con-
clusions. This article is the third part of a series: a convenient
algebraic formulation of the linear RT problem in the CRD limit
was introduced in Janett et al. (2021b), while preconditioned
Krylov methods were described and applied to the same problem
in Benedusi et al. (2021).

2. Transfer problem of polarized radiation

The intensity and polarization of a beam of radiation are fully
described by the four Stokes parameters I,Q,U, and V ∈ R,

which are usually combined in the four-component Stokes vector

I = (I,Q,U,V)T = (I1, I2, I3, I4)T,

with the intensity I being positive and the polarization being
encoded in Q, U, and V . The Stokes vector and the other phys-
ical quantities entering the RT problem are in general functions
of time t, of the spatial point r, and of the frequency ν and
propagation direction Ω of the considered radiation beam. We
consider the stationary setting, assuming that all the quantities
are independent of time.

2.1. Transfer equation of polarized radiation

When a beam of radiation propagates in a medium (e.g., the
plasma of a stellar atmosphere), it interacts with the atoms,
molecules, and other particles present therein, and its inten-
sity and polarization are modified. This modification is fully
described by the RT equation for polarized radiation, which is
integro-differential by nature. In a spatial domain D ⊂ Rd with
d ∈ {1, 2, 3}, this equation can be written as

Ω · ∇Ii(r,Ω, ν) = −
4∑

j=1

Ki j(r,Ω, ν)I j(r,Ω, ν) + εi(r,Ω, ν), (1)

where i = 1, . . . , 4, r ∈ D, Ω = (θ, χ) ∈ [0, π] × [0, 2π) is a unit
vector, and ν ∈ [νmin, νmax] ⊂ R+. Equation (1) is equipped with
suitable boundary conditions on ∂D, and describes a set of initial
values problems (IVPs). The 4 × 4 propagation matrix

K =


η1 η2 η3 η4
η2 η1 ρ4 −ρ3
η3 −ρ4 η1 ρ2
η4 ρ3 −ρ2 η1


describes how the medium absorbs radiation, accounting for the
coupling between different Stokes parameters. A detailed deriva-
tion of the explicit expression of the elements of K for different
atomic models can be found in Landi Degl’Innocenti & Landolfi
(2004). The emission vector

ε = (ε1, ε2, ε3, ε4)T

describes instead the radiation emitted by the plasma in the four
Stokes parameters.

The elements of K and ε generally depend on the state of
the atom, which in turn has to be determined by solving a set of
rate equations, usually under the assumption of statistical equi-
librium. These equations are local and describe the interaction of
the atomic system with the radiation field (radiative processes),
with the other particles present in the plasma (collisional pro-
cesses), and with the possible presence of external fields (e.g., a
magnetic field). When the statistical equilibrium equations have
an analytical solution, the emissivity can be directly expressed
as function of the radiation field that illuminates the atom. More
precisely, the emission vector can be written as the sum of two
terms,

ε(r,Ω, ν) = εth(r,Ω, ν) + εsc(r,Ω, ν). (2)

The first term on the r.h.s. describes the contribution to the
emissivity brought by atoms that are collisionally excited (col-
lisional or thermal term). This term only depends on the local
atmospheric model quantities; its explicit expression for the case
of a two-level atom, under the assumption of isotropic colli-
sions (which is considered throughout this work), is reported in
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Appendix A. The second term describes the contribution brought
by radiatively excited atoms (scattering term). This term clearly
depends on the radiation field I. By using the redistribution
matrix formalism (which is particularly useful for describing
PRD phenomena), the scattering term is given by the following
integral operator:

εsc
i (r,Ω, ν)=kL(r)

∫
dν′

∮
dΩ′

4π

4∑
j=1

Ri j(r,Ω′,Ω, ν′, ν)I j(r,Ω′, ν′),

(3)

where kL is the frequency-integrated absorption coefficient and
Ri j are the elements of the so-called redistribution matrix, which
couples all Stokes parameters, all directions, and all frequencies
at each spatial point. We follow the convention that primed and
unprimed quantities refer to the incident and scattered radiation,
respectively.

2.2. Scattering processes

There are two main reasons why the inclusion of scattering
processes makes the numerical approach to the RT problem par-
ticularly complex. First, the scattering term (3) locally connects
all frequencies ν and directionsΩ considered in the RT problem.
Therefore, the transfer Eq. (1) must be simultaneously solved for
all the frequencies and directions. Second, the evaluation of the
integral (3) can be very expensive, depending on the considered
scattering model. The redistribution matrix generally couples all
the incident (ν,Ω) and scattered (ν′,Ω′) frequencies and direc-
tions. However, this strong coupling is mitigated either by the use
of light-weight models for the description of scattering (e.g., the
assumption of CRD) or by the use of simplifying approximations
(e.g., angle-averaging). In this section, we briefly discuss the
limit of CRD, and the main simplifying assumptions for treating
the general PRD case.

2.2.1. Limit of complete frequency redistribution

Although scattering is intrinsically a second-order process in
a perturbative expansion of matter-radiation interaction, under
given circumstances, it can be suitably described as a temporal
succession of independent first-order absorption and re-emission
processes, in which no correlation between the frequencies of
the incoming and outgoing radiation can be accounted for (e.g.,
Casini & Landi Degl’Innocenti 2008). This is generally referred
to as the CRD limit. It can be shown that CRD is a suitable
assumption either when the rate of elastic collisions (which
relax the coherence of scattering) is very high, or when the
radiation field that illuminates the atom is spectrally flat (e.g.,
Casini & Landi Degl’Innocenti 2008). A solid CRD theory
for the generation and transfer of polarized radiation, based
on the flat-spectrum assumption, is the one described in Landi
Degl’Innocenti & Landolfi (2004). Through this theory, it is
possible to suitably model the scattering polarization signals of
weak photospheric lines, such as the Sr I line at 4607 Å (e.g., del
Pino Alemán & Trujillo Bueno 2021), as well as the Doppler
core signals of strong chromospheric lines, such as the H I Ly-α
line at 1215 Å (e.g., Štěpán et al. 2015).

2.2.2. Coherent scattering and collisional redistribution

A proper description of polarization phenomena that takes
frequency correlations between the incoming and outgoing
radiation in the scattering processes into account requires the

application of suitable theoretical frameworks. Various
approaches are available today. We mention here the one based
on the Kramers–Heisenberg scattering equation presented
in Stenflo (1994), the one based on the idea of metalevels
(Weisskopf & Wigner 1930) proposed by Landi Degl’Innocenti
et al. (1997), and that of Bommier (1997a,b, 2017), which is
based on a high-order perturbative expansion of matter-radiation
interaction and self-consistently includes frequency redistri-
bution effects due to elastic collisions. Finally, we recall the
approach based on a diagrammatic treatment of atom-photon
interaction proposed by Casini et al. (2014, 2017a,b).

It can be shown that the most general form of the redistribu-
tion matrix for an atomic system with infinitely sharp lower states
is given by the linear combination of two terms (e.g., Bommier
1997a,b)

Ri j(r,Ω′,Ω, ν′, ν) = RII
i j(r,Ω′,Ω, ν′, ν) + RIII

i j(r,Ω′,Ω, ν′, ν),

where RII describes scattering processes that are coherent in fre-
quency in the atomic rest frame, while RIII describes scattering
process that are totally uncorrelated in the same reference frame.
These two terms contain branching ratios that depend on the rate
of elastic collisions (see next section for more details), so that the
linear combination of RII and RIII allows accounting for the partial
frequency redistribution effects induced by elastic collisions.

2.2.3. Doppler redistribution

By means of a standard procedure (e.g., Hummer 1962; Mihalas
1978), the redistribution matrix can be transformed from the
atomic reference frame into the observer frame by taking into
account the Doppler effect due to both thermal motions and
bulk velocities. We assumed that thermal velocities are described
by a Maxwellian distribution, and we accounted for arbitrary
bulk velocities. The Doppler effect causes frequency redistribu-
tion effects in the observer frame, inducing a complex coupling
between frequencies and directions. This coupling makes the
numerical problem extremely demanding from the computa-
tional point of view. For this reason, simplifying approximations
have been proposed in the past and are still commonly used, such
as the angle-averaged one for the case of RII

i j (e.g., Mihalas 1978;
Rees & Saliba 1982; Leenaarts et al. 2012; Alsina Ballester et al.
2017), and the approximation of CRD in the observer frame for
RIII

i j (e.g., Mihalas 1978; Sampoorna et al. 2017; Alsina Ballester
et al. 2017).

3. Model problem

We considered a two-level atom with unpolarized and infinitely
sharp lower level in the presence of magnetic and bulk veloc-
ity fields. We used the redistribution matrix for this atomic
model derived by Bommier (1997a,b). We considered the exact
angle-dependent expression of RII

i j in the observer frame and
the approximation of CRD in the observer frame for RIII

i j, which
is a suitable choice for modeling strong chromospheric lines
(see Janett et al. 2021b). When the formalism of irreducible
spherical tensors for polarimetry is used (see Chapt. 5 of Landi
Degl’Innocenti & Landolfi 2004) and the impact of an arbi-
trary bulk velocity is accounted for, the RII

i j and RIII
i j redistribution

matrices can be written as

RII
i j(r,Ω′,Ω, ν′, ν) =

∑
KK′Q

αQ(r)rII,KK′
Q (r,Ω′,Ω, ν′, ν)

·T̂ K′
Q,i (Ω)T̂ K

−Q, j(Ω
′), (4)
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RIII
i j(r,Ω′,Ω, ν′, ν) =

∑
KK′K′′Q

(βK′′
Q (r)−αQ(r))rIII,KK′K′′

Q (r,Ω′,Ω, ν′, ν)

·T̂ K′
Q,i (Ω)T̂ K

−Q, j(Ω
′), (5)

where T̂ K
Q,i are the geometrical tensors defined in Landi

Degl’Innocenti & Landolfi (2004, Sect. 5.11), evaluated in a
reference system with the quantization axis directed along the
magnetic field. The explicit expressions of rII,KK′

Q and rIII,KK′K′′
Q

can be recovered from Alsina Ballester et al. (2017) for the case
without bulk velocity. Fully equivalent expressions were also
derived by Sampoorna (2011), working within the Kramers–
Heisenberg approach of Stenflo (1994). A bulk velocity field
only affects the frequencies of the incident and scattered radi-
ation perceived by the atom. This effect can thus be included by
introducing the corresponding Doppler shifts in the rII,KK′

Q and
rIII,KK′K′′

Q expressions. The quantities αQ and (βK
Q − αQ) are the

branching ratios for RII
i j and RIII

i j, respectively, with

αQ(r) =
ΓR

ΓR + ΓI(r)
ΓR + ΓI(r)

ΓR + ΓI(r) + ΓE(r) + 2πiνL(r)guQ
,

βK
Q(r) =

ΓR

ΓR + ΓI(r)
ΓR + ΓI(r)

ΓR + ΓI(r) + D(K)(r) + 2πiνL(r)guQ
,

where ΓR, ΓI , and ΓE are the rates for radiative de-excitation,
inelastic collisions, and elastic collisions, respectively, and the
quantity D(K) is the depolarizing rate of elastic collisions (e.g.,
Landi Degl’Innocenti & Landolfi 2004, Sect. 7.13). The imagi-
nary term in the denominator describes the Hanle effect, νL is
the Larmor frequency, and gu is the Landé factor of the upper
level.

We note that in the absence of elastic collisions (i.e., ΓE =
D(K) = 0), the branching ratio for RIII

i j vanishes and the total
redistribution matrix reduces to RII

i j; this is the limit of coherent
scattering in the atomic frame. If the rate of elastic collisions
is very high (i.e., ΓE ≫ ΓR,ΓI), then the branching ratio for
RII

i j vanishes and the total redistribution matrix reduces to RIII
i j;

this is the limit of CRD in the atomic frame1. In this case, the
depolarizing rate of elastic collisions becomes very high, that is,
D(K) ≫ ΓR,ΓI for K , 0 (we recall that D(0) = 0), and polariza-
tion phenomena thus become negligible. We finally note that the
factor

ΓR

ΓR + ΓI(r)

is common to both αQ and βK
Q and represents the branching ratio

of the scattering contribution to the total emissivity in Eq. (2).
In the case ΓI ≫ ΓR, the scattering term vanishes and the emis-
sivity is dominated by the collisional term; this is the limit of
local thermodynamic equilibrium (LTE), which is a light-weight
RT problem because the emissivity does not depend on the radi-
ation field I, thus decoupling all frequencies ν and directions Ω
considered in the problem.

1 It is interesting to observe that if we artificially set αQ = 0 while
keeping the nominal value of βK

Q, and when we assume that the inci-
dent field is spectrally flat, the ensuing emission coefficient coincides
with the one derived in the CRD approach of Landi Degl’Innocenti &
Landolfi (2004).

z∗

x

y

z

Ω

zmax

zmin

χ

θ

Fig. 1. Cartesian reference system considered in the problem. The z-
axis is directed along the local vertical. The angles θ (inclination) and
χ (azimuth) specifying a given propagation direction Ω are indicated
in the figure. The considered atmospheric model extends from zmin to
zmax. The various physical quantities are constant over the horizontal x–
y planes.

3.1. Linearization

The problem presented in Sect. 2 is in general nonlinear. For the
considered atomic model, the elements of both K and ε depend
on the coefficient kL. This quantity is proportional to the popula-
tion of the lower level, which in turn depends on I in a nonlinear
way through the statistical equilibrium equations. The redistri-
bution matrix R only depends on local atmospheric quantites,
therefore a suitable assumption to retrieve linearity with respect
to I is to fix the coefficient kL a priori (see Belluzzi & Trujillo
Bueno 2014; Alsina Ballester et al. 2017; Janett et al. 2021a). In
this way, K is independent of I and ε linearly depends on it. The
whole problem (1) thus becomes linear in I, since it consists of
the set of linear IVPs (1) linearly coupled through the scattering
term (3).

3.2. Continuum processes

So far, we have only considered the contribution to the emis-
sion vector due to line processes, that is, due the transition
between the upper and lower level of the considered atomic
model. However, the proposed formalism allows for a straight-
forward inclusion of continuum processes. Continuum processes
contribute to the emissivity through a scattering term and a ther-
mal term that are formally analogous to these brought by line
processes (see Appendix B). It is therefore possible to consider
both line and continuum processes via expressions that are for-
mally identical to those introduced in the previous section. Under
the typical conditions found in the solar atmosphere, contin-
uum processes only contribute to the diagonal elements for the
propagation matrix (see Appendix B).

3.3. Plane-parallel atmospheric model

We considered a semi-empirical plane-parallel model of the
solar atmosphere, in which all physical quantities are con-
stant over horizontal planes. In this setting, r = (x, y, z) can
be replaced by the vertical coordinate z ∈ [zmin, zmax] ⊂ R,
see Fig. 1. With this simplification, the RT Eq. (1) can be
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rewritten as

cos(θ)
d
dz

I(z, θ, χ, ν) = −K(z, θ, χ, ν)I(z, θ, χ, ν)+ ε(z, θ, χ, ν). (6)

For in-going rays at the domain boundary ∂D, Eq. (6) is equipped
with the following boundary conditions:

I(zmin, θ, χ, ν) = Iin(ν) for θ ∈ [0, π/2),∀χ,∀ν, (7)
I(zmax, θ, χ, ν) = 0 for θ ∈ (π/2, π],∀χ,∀ν.

At the lower boundary, we considered an isotropic and unpolar-
ized incident radiation Iin(ν) = [B(ν), 0, 0, 0]T , where B(ν) is the
Planck function at the effective temperature in zmin.

4. Discretization and algebraic formulation

In astrophysical applications, the discretization of the RT prob-
lem described by Eqs. (1) and (3) is usually performed in terms
of the discrete ordinates method (DOM). Within this method, the
continuous problem is discretized on a predefined set of direc-
tions determined by the quadrature rule chosen to approximate
the angular integral appearing in Eq. (3), leading to a set of
semi-discrete RT equations. This angular discretization is then
coupled with the spatial one, usually provided by the considered
atmospheric model, and the spectral one, tailored to the con-
sidered spectral line. The DOM method is easy to implement,
usually performs with good accuracy and flexibility, and leads
to algorithms of reasonable computational efficiency. We con-
sidered a double Gauss-Legendre angular discretization coupled
with an exponential integrator method in space; these quadrature
methods are briefly described in Sects. 4.2 and 4.3, respectively.
Finally, the considered spectral interval was discretized through
a grid, which provides a suitable sampling of the considered
spectral line.

4.1. Frequency discretization

The considered spectral interval [νmin, νmax] is discretized with a
unevenly spaced grid with Nν nodes, namely

νmin = ν1 < ν2 < · · · < νNν = νmax.

The frequency grid {νn}
Nν
n=1 is usually finer in the line core, where

the nodes are equally spaced, and coarser in the wings, where the
node distances increase logarithmically.

4.2. Angular discretization

For the angular discretization of Ω = (θ, χ), we used a tensor
product quadrature. For the inclination µ = cos(θ) ∈ [−1, 1],
we considered two Gauss-Legendre grids (and corresponding
weights) with Nθ/2 nodes each, namely

−1 < µ1 < µ2 < · · · < µNθ/2 < 0 < µNθ/2+1 < · · · < µNθ < 1,

for µ ∈ (−1, 0) and µ ∈ (0, 1), respectively. This grid corresponds
to

0 < θ1 < θ2 < · · · < θNθ/2 < π/2 < θNθ/2+1 < · · · < θNθ < π,

with θ j = arccos(µ j) for j = 1, . . . ,Nθ, with Nθ even. For the
azimuth χ ∈ (0, 2π], we considered an equidistant grid (and
corresponding trapezoidal weights) with Nχ nodes, namely

χk = k · 2π/Nχ for k = 1, . . . ,Nχ.

4.3. Spatial discretization and formal solution

The discretization of the spatial domain D is usually given by
the considered discrete atmospheric model. We considered the
1D semi-empirical model C of Fontenla et al. (1993), in which
the spatial domain is discretized with an unevenly spaced grid
with Ns nodes, namely

zmin = z1 < z2 < · · · < zNs = zmax. (8)

For (θ j, χk, νn) and a corresponding emissivity vector ε at all
{zl}

Ns
l=1, the solution of the semi-discrete ODEs system (6) is

numerically approximated in {zl}
Ns
l=1 applying a suitable integra-

tor: this process is known as the formal solution. The exponential
integrators class (e.g., Guderley & Hsu 1972) provides different
suitable formal solvers, known as short-characteristic methods in
the unpolarized case and as DELO methods in the polarized case
(e.g., Rees et al. 1989; Janett et al. 2017a).

For the sake of clarity, we briefly recall the idea that lies
behind DELO methods. Equation (6) is first rewritten as

cos(θ)
d
dz

I(z, θ, χ, ν) = η1(z, θ, χ, ν)[S(z, θ, χ, ν) − I(z, θ, χ, ν)],

(9)

where η1 is the diagonal element of the propagation matrix and

S(z, θ, χ, ν) =
(
Id −

K(z, θ, χ, ν)
η1(z, θ, χ, ν)

)
I(z, θ, χ, ν) +

ε(z, θ, χ, ν)
η1(z, θ, χ, ν)

.

For a given ray (θ, χ, ν), the exact integration of Eq. (9) in the
interval [z0, z] yields the variation of constants formula

I(z, θ, χ, ν) = e−τ(z,θ,χ,ν)I(z0, θ, χ, ν) +
∫ z

z0

dx e−τ(x,θ,χ,ν)S(x, θ, χ, ν),

(10)

where

τ(z, θ, χ, ν) =
1

| cos(θ)|

∫ z

z0

dx η1(x, θ, χ, ν). (11)

A large variety of numerical schemes are available to approxi-
mate the integral in Eq. (10). In particular, a linear approximation
of S i in the integration interval produces the DELO-linear
method, which is an L-stable method particularly suited for
the solution of Eq. (6) since it guarantees stability by exactly
resolving the exponential decay of the solution due to absorp-
tion processes (e.g., Janett & Paganini 2018). For the numerical
experiments presented in Sect. 6, the DELO-linear method was
used as formal solver.

We finally remark that DELO methods requires the spatial
scale conversion from the geometrical scale to the optical depth
scale described by Eq. (11); details about this conversion are
given in Appendix C. We refer to Janett et al. (2017a,b, 2018) and
Janett & Paganini (2018), for a detailed review of DELO meth-
ods and their convergence and stability properties in the context
of polarized radiation transfer.

4.4. Algebraic formulation

As presented in Janett et al. (2021b) and Benedusi et al. (2021)
for a simplified setting, we considered the algebraic formulation
of Eq. (6), which is a key step for the setup of an efficient solution
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strategy. For the total number of unknowns N = 4NsNθNχNν, we
considered the collocation vectors of the Stokes and emission
vectors, I and ϵ ∈ RN , respectively, ordered with a lexicographic
criterion, namely

I = [I1(z1, θ1, χ1, ν1), . . . , I4(z1, θ1, χ1, ν1), I1(z1, θ1, χ1, ν2), . . . ,
. . . , I3(zNs , θNθ , χNχ , νNν ), I4(zNs , θNθ , χNχ , νNν )]

T ,

ϵ = [ε1(z1, θ1, χ1, ν1), . . . , ε4(z1, θ1, χ1, ν1), ε1(z1, θ1, χ1, ν2), . . . ,
. . . , ε3(zNs , θNθ , χNχ , νNν ), ε4(zNs , θNθ , χNχ , νNν )]

T .

For example, the first 4NθNχNν elements of I and ϵ correspond
to the first spatial point z1. We refer to algorithms 1–2 for the
precise indices correspondence relation. For notational simplic-
ity, an abuse of notation is employed: the symbol Ii is used to
denote both the continuous solution of Eq. (1) and its numerical
approximation.

The solution of the RT problem is divided into two compo-
nents: the solution of the transfer equation (formal solution), and
the calculation of the emissivity. We recall that both IVP (1) and
the integral (3) are linear with respect to I and ε. In a discrete
emissivity field ϵ, the solution of all discretized transfer IVPs in
Eq. (6) can be written as

I = Λϵ + t, (12)

where Λ : RN → RN is the linear transfer operator that encodes
the numerical scheme (e.g., DELO-linear) and the propagation
matrix K. An example of the explicit assembly of Λ is given in
Janett et al. (2021b). The action of Λ can be encoded in matrix-
free form (see algorithm 1). The vector t ∈ RN encodes boundary
conditions and can be computed using a modification of algo-
rithm 1, setting ϵ = 0 and using the prescribed Iin instead of the
zero boundary conditions.

Similarly, the discrete computation of the emissivity of
Eq. (2) can be written as

ϵ = ϵsc + ϵ th = ΣI + ϵ th, (13)

where the linear operator Σ : RN → RN encodes the discretized
scattering integral (3) and depends on the chosen numerical
quadratures. When accounting for PRD effects, we can write the
action of Σ as the sum of two components, namely

Σ = ΣII + ΣIII, (14)

where ΣII and ΣIII encode the contributes of RII and RIII, respec-
tively. As for the operator Λ, the action of Σ can be encoded in a
matrix-free form (see algorithm 2). The vector ϵ th ∈ RN encodes
the thermal emissivity.

Combining Eqs. (12) and (13), we can formulate the whole
discrete RT problem as a single-size N linear system with
unknown I, namely

(Id − ΛΣ)I = Λϵ th + t. (15)

The right-hand side vector Λϵ th + t can be computed a priori by
solving IVP (6)–(7) with thermal contributions alone, that is, by
performing a single formal solution with εsc = 0. The matrix-
free action of the operator Id − ΛΣ is described by algorithm 3.

Since anisotropic and heterogeneous coefficients as well as
unevenly spaced grids are present, the matricesΛ, Σ, and Id−ΛΣ
are usually not symmetric. In particular, the matrix Id −ΛΣ is an
M-matrix and is nonsingular if ρ(ΛΣ) < 1, where ρ is the spec-
tral radius. Figure 2 shows an example of the sparsity pattern of
these three matrices. We remark that the block diagonal structure
of Σ is well suited for a parallel evaluation on each spatial node,

Algorithm 1: Compute I = Λϵ, that is, perform a for-
mal solution neglecting boundary contributions.

Input: ϵ ∈ RN

Data: set of propagation matrices K(zl, θ j, χk, νn) ∈ R4×4.
for j = 1, . . . ,Nθ do

for k = 1, . . . ,Nχ do
for n = 1, . . . ,Nν do

for l ∈ {1, . . . ,Ns} do
Numerically solve IVP (6) (e.g., using the

DELO-linear method) with zero initial
conditions, that is, setting Iin = 0 in Eq. (7),
obtaining Ii(zl, θ j, χk, νn) for i = 1, . . . , 4.

Set I[4(lNθNχNν + jNχNν + kNν + n)+ i+ 1] =
Ii(zl, θ j, χk, νn).

Output: I ∈ RN

Algorithm 2: Compute ϵsc = ΣI, that is, the scattering
integral.

Input: I ∈ RN ,
Data: set of coefficients entering Eq. (3) and quadrature weights.
for l = 1, . . . ,Ns do

for j = 1, . . . ,Nθ do
for k = 1, . . . ,Nχ do

for n = 1, . . . ,Nν do
for i = 1, . . . , 4 do

Evaluate integral (3), obtaining
εsc

i (zl, θ j, χk, νn).
Set
ϵsc[4(lNθNχNν+ jNχNν+kNν+n)+ i+1] =
εsc

i (zl, θ j, χk, νn).

Output: ϵsc ∈ RN

Algorithm 3: Compute Iout = (Id − ΛΣ)I.
Input: I ∈ RN ,
Data: data for algorithms 1–2.
Compute ϵsc = ΣI with algorithm 2.
Compute Ifs = Λϵ

sc with algorithm 1.
Iout = I − Ifs.
Output: Iout ∈ R

N

as the structure of algorithm 2 suggests. Moreover, the action
of Λ couples different spatial nodes, but each ray (θ j, χk, νn)
can be evaluated independently. As sparsity patterns suggest, the
application of Λ and Σ comes at a very different computational
costs; algorithm 1 indicates that the application of Λ requires
O(N) floating point operations, while algorithm 2 shows that
O(NNθNνNχ) operations are required to apply Σ. Since the redis-
tribution matrix RIII is separable, the operator ΣIII has complexity
of O(N) and the cost of Σ is thus dominated by the ΣII term.
Figure 3 reports an example of run times for the applica-
tion of the three operators, showing that the cost of applying
Λ and ΣIII is indeed negligible when compared to the cost
of ΣII.

5. Scalable solution strategy

The structure of the linear system in Eq. (15) suggests the use
of a fixed-point iteration (also known as Richardson method or
Λ-iteration), that is, iterating between Eqs. (12) and (13) until
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Fig. 2. Sparsity patterns ofΛ, Σ, and Id−ΛΣ using Ns = 10, Nθ = 2, Nχ = 1, and Nν = 10, i.e., N2 = 8002 = 6.4× 105 elements. The corresponding
number of nonzero elements (nz) is reported. The elements in the lower and upper triangular parts of Id − ΛΣ correspond to downward (negative
µ) and upward (positive µ) directions, respectively.
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Fig. 3. Run times for a single application of Σ, ΣIII, and Λ using algo-
rithms 1–2 varying the number of processors Np ≤ Ns with Ns = 70,
Nθ = 12, Nχ = 8, and Nν = 99.

convergence. However, this iteration converges too slowly for
practical applications, and more effective strategies are often
employed, such as Jacobi or block-Jacobi preconditioners (e.g.,
Trujillo Bueno & Manso Sainz 1999; Janett et al. 2021b) and
multigrid techniques (e.g., Fabiani Bendicho et al. 1997).

More recently, preconditioned Krylov methods gained pop-
ularity in the RT context (e.g., Warsa et al. 2003; Anusha et al.
2009; Ren et al. 2019; Badri et al. 2018, 2019; Benedusi et al.
2021). We recall that the explicit assembly of the dense matrix
Id − ΛΣ in Eq. (15) is indeed not suitable for practical applica-
tions because N typically exceeds 106 for 1D models and reaches
1010 for full 3D models. Crucially, Krylov methods are well
suited for matrix-free approaches and have proved to be highly
effective solution strategies for large linear systems.

5.1. Preconditioning

Preconditioning can significantly increase robustness and con-
vergence speed of iterative techniques, such as Krylov methods.
We recall that an effective left preconditioner P ∈ RN×N for the

linear system of Eq. (15) should be a good and cheap approxima-
tion of the matrix Id −ΛΣ. More precisely, P−1(Id −ΛΣ) should
have a smaller condition number than Id − ΛΣ, with P−1 being
computationally cheap to apply. As pointed out in Sect. 4.4,
the application of ΣII is by far the most expensive part within
the application of the whole operator Id − ΛΣ. For this reason,
the preconditioner is designed by neglecting the action of ΣII,
namely

P = Id − ΛΣIII, (16)

where ΣIII is obtained setting αQ = 0 in Eqs. (4)–(5) when run-
ning algorithm 2. The matrix-free version of P is obtained by
replacing Σ with ΣIII in algorithm 3. The operator ΣIII is indeed a
cheap approximation of Σ and P corresponds to the RT operator
in the CRD limit. The matrix-free application of P−1 is described
in algorithm 4.

Algorithm 4: Compute x = P−1y, that is, solve a CRD
problem.

Input: y ∈ RN ,
Data: routine encoding the matrix-free action of P in

Eq. (16).
x = GMRES(P, y), i.e., solve the size N linear system

Px = y using the GMRES method with a prescribed
stopping criterion.

Output: xout ∈ R
N

5.2. Parallel matrix-free Krylov solver

For the solution of the linear system in Eq. (15), we pro-
pose a matrix-free preconditioned GMRES (PGMRES) method,
where the matrix-free actions of Id − ΛΣ and P−1 are given by
algorithms 3–4, respectively. In this sense, the proposed solver
consists of two nested GMRES iterations; one for the solution of
Eq. (15) and one for the solution of the corresponding CRD prob-
lem (i.e., for the evaluation of P−1). Numerical tests revealed that
other choices of the iterative scheme (e.g., BiCGSTAB method)
and of the preconditioner (e.g., Jacobi) are not competitive in
terms of run time with the proposed strategy.
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z1

z2

z3

z4

P1

P2

P3

Fig. 4. Example of row-wise partition of Σ for Ns = 4 and Np = 3, i.e.,
P1, P2, and P3, aware of the block structure of Σ.

We naturally achieve spatial parallelization given the block
diagonal structure of Σ, while global communication in space is
achieved by the light-weight application of Λ, which is sequen-
tial by nature. Parallelization on Np ≤ Ns processors is achieved
with a row-wise partition and distribution of Σ and Λ with a load
balancing principle. Spatial blocks are not split between multiple
processors; each processor exactly corresponds either to

⌊
Ns/Np

⌋
or to

⌈
Ns/Np

⌉
spatial nodes, see Fig. 4. The solution vector I

is distributed with the same parallel layout. Parallel speed-up
is limited by the slowest processor (corresponding to

⌈
Ns/Np

⌉
blocks), and the run time with Np processors, denoted by T(Np),
can be bounded by T(Np) ≤ T(Ns) ·

⌈
Ns/Np

⌉
.

6. Numerical experiments

6.1. Implementation

For the distributed data structures and Krylov solvers, we used
the C++ framework PETSc (see Balay et al. 2015a,b, 1997) with
the Cray-MPICH compiler. We stress that the PETSc default
row-wise partition follows a load-balancing principle, and except
in trivial cases (i.e., when Ns/Np ∈ N), it does not correspond to
the row-wise partition described in Fig. 4. Therefore, the parti-
tion must be adjusted by the user, for example, using the PETSc
functions VecSetBlockSize() and MatSetBlockSize() and
specifying the block size 4NθNχNν.

The nature of the application of Λ requires sequential calls
to the MPI_Send() and MPI_Recv() routines to propagate the
formal solution through the different processors. Since the com-
plexity of the application of Λ is negligible compared to the one
of Σ, this sequential bottleneck is not relevant in the presented
numerical experiment; see Fig. 3. For larger-scale experiments,
where Amdahl’s law can play a role, a multithreaded implemen-
tation of Λ with one thread for each ray (θ, χ, ν) is possible.

Numerical experiments have been performed on the Cray
XC40 nodes of the Piz Daint supercomputer of the Swiss
national supercomputing centre (CSCS)2. The used partition fea-
tures computing nodes with two 18-core Intel Xeon E5-2695v4
(2.10GHz) processors. We used the default GMRES settings of
PETSc for the preconditioning described in algorithm 4 and for
the solution of the linear system of Eq. (15), using a zero initial
guess, a restart after 30 iterations, and a threshold of 10−5 for
the relative residual as a stopping criterion. A finer tuning of the
GMRES in algorithm 4, for instance, by increasing its tolerance,
is possible.

2 https://www.cscs.ch/computers/piz-daint/

Table 1. Number of iterations until convergence of GMRES and PGM-
RES for the solution of Eq. (15), varying Nθ = Nχ and Nν with
Ns = 70.

GMRES PGMRES

Nν 49 99 199 49 99 199

Nθ = Nχ = 4 40 32 29 8 4 4
Nθ = Nχ = 6 41 32 29 8 4 4
Nθ = Nχ = 8 41 32 29 8 4 4
Nθ = Nχ = 10 41 32 29 8 5 4
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b
‖ 2

Richardson (a.k.a Λ-iteration) [>2 hours]

GMRES [52 minutes]

BiCGSTAB [55 minutes]

Prec. Richardson [9 minutes]

Prec. GMRES (PGMRES) [7 minutes]

Prec. BiCGSTAB [8 minutes]

Fig. 5. Convergence history for the solution of Eq. (15) with Ns = 70,
Nθ = 12, Nχ = 8, and Nν = 99; the run time of preconditioned methods
for Np = 70 is reported in square brackets.

6.2. Atomic and atmospheric models

We considered the Ca I line at 4227 Å, which is an ideal
benchmark for new approaches to the modeling of scattering
polarization including PRD effects and can be suitably mod-
eled by considering a simple two-level atom (e.g., Faurobert-
Scholl 1992; Sampoorna et al. 2009; Supriya et al. 2014; Alsina
Ballester et al. 2018; Janett et al. 2021a). We considered the
wavelength interval [λmin, λmax] = [4220, 4234] Å, discretized
with Nν = 99 nodes. The problem was solved in the 1D semi-
empirical model C of Fontenla et al. (1993), with [zmin, zmax] =
[−100, 2219] km, discretized with Ns = 70 nodes. In the appli-
cations shown in Sect. 6.4, the approach was also tested, includ-
ing the impact of deterministic magnetic and bulk velocity
fields.

6.3. Convergence and scaling

In Table 1, we report the number of iterations to convergence
for GMRES and PGMRES, for which we varied the discretiza-
tion parameters Nθ, Nχ, and Nν, that is, the number of discrete
rays. In this regard, both methods prove to be robust; increasing
discrete rays does not correspond to an increase of iterations. In
Fig. 5, we present an example of the convergence history for pre-
conditioned and unpreconditioned iterative methods. We recall
that each BiCGSTAB iteration requires two evaluations of the
RT operator, making it globally slower than PGMRES.
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Fig. 6. Scaling experiments. Strong-scaling (left panel) and weak-scaling (right panel) experiments, corresponding to the data of Tables 2 and 3,
respectively. The dashed lines represent ideal strong and weak scaling.

Table 2. Run time (in minutes) to convergence for the solution of
Eq. (15) using Ns = 128, Nθ = 12, Nχ = 8, and Nν = 99, i.e., N ≃
4.9 × 106 total unknowns.

Np 1 2 4 8 16 32 64 128

GMRES 1938 993 465 234 118 59.5 30.3
PGMRES 648 391 198 100 50.8 25.6 13.7 7.1

Notes. GMRES and PGMRES required 37 and 5 iterations to converge,
respectively.

Table 3. Run time (in minutes) to convergence for the solution of
Eq. (15) varying Ns = Np and with Nθ = 12, Nχ = 8, and Nν = 99;
corresponding iterations are reported in square brackets.

Np = Ns 70 139 277 553

GMRES 32.7 [32] 37.8 [37] 41.9 [47] 41.7 [48]
PGMRES 8.1 [5] 8.9 [5] 8.9 [5] 9.1 [5]

Notes. The number of unknowns per processors is fixed. For the last
column we have N ≃ 2.1 × 107 unknowns.

In Table 2, we present a strong scaling experiment, that is, we
varied the number of processors Np for a fixed problem size. In
Table 3, we present a weak scaling experiment, that is, we varied
the number of processors for a fixed problem size per processor.
In particular, we report run times and iterations to convergence
for the solution of the linear system of Eq. (15) using GMRES
and PGMRES. Run times also include the time spent to assem-
ble the right-hand side of Eq. (15), which is negligible, however.
We remark that the matrix-free setting does not require other
prior assembly costs. The run times from Tables 2 and 3 are also
reported in Fig. 6. Both GMRES and PGMRES show an near
optimal strong scaling and the proposed PGMRES outperforms
the unprecondiotioned GMRES in terms of iterations and run
time. Moreover, PGMRES shows an near optimal weak scaling
and robustness with respect to the number of spatial points Ns.
This is a key finding in view of 3D atmospheric models, where
Ns is expected to grow considerably.

6.4. Emergent Stokes profiles

In Fig. 7, we show the impact of the magnetic field on the emer-
gent Stokes profiles of the Ca I 4227 Å line for a line of sight

(LOS) with µ = 0.17. The magnetic field is horizontal and con-
tained in the plane defined by the local vertical and the LOS.
The figure clearly shows the Hanle effect, which decreases the
amplitude of the line-core peak of the Q/I profile while produc-
ing a peak in the core of U/I. The impact of magneto-optical
effects is likewise visible, which decreases the wing lobes of
Q/I while producing similar wing lobes in U/I. Furthermore,
antisymmetric V/I signals are evidently produced by the well-
known Zeeman effect. These results excellently agree with those
reported in Janett et al. (2021b).

In order to show the impact of bulk velocities on the emer-
gent Stokes profiles, we considered the following vertical bulk
velocities:

vb(z) = 0.018 s−1 · z,

with the atmospheric height z given in km and vb in km s−1. In
Fig. 8 we show the emergent Stokes profiles of the Ca I 4227 Å
line for two different LOSs, with µ = 0.17 and µ = 0.38. We first
note that the emergent I and Q/I profiles are shifted in frequency
due to the Doppler effect; this shift increases for increasing µ
values because of the larger bulk velocity component along the
LOS. Moreover, the line-core peak signal of the Q/I profiles
is significantly enhanced with respect to the zero-velocity case.
The radiation field anisotropy is indeed significantly enhanced
in the presence of velocity fields with gradients, thus increas-
ing the linear polarization degree (see Carlin et al. 2012). As
expected, the amplitude of the whole Q/I signal in the core and
in the wings decreases for increasing µ values (i.e., when moving
toward the center of the solar disk). We finally note that the Q/I
profiles obtained in the presence of bulk velocities are clearly
asymmetric, showing a higher blue wing lobe.

7. Conclusions

We considered the NLTE RT problem for polarized radia-
tion, including scattering polarization and angle-dependent PRD
effects, which is currently one of the most challenging settings
in the field of numerical RT. In this context, after linearization
under a suitable physical assumption, we proposed an innovative,
efficient, parallel, and scalable solution strategy.

We first presented a suitable discretization of the linear RT
problem and its corresponding algebraic formulation in terms
of transfer and scattering operators. This formulation was then
used to design a matrix-free preconditioned GMRES (PGMRES)
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-5

0

5

10

15

20

U
/I

×10−3

4226 4227 4228

λ (Å)
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Fig. 7. Emergent Q/I (left panel), U/I (middle panel), and V/I (right panel) profiles calculated in the FAL-C atmospheric model (Ns = 70), with
Nθ = 12, Nχ = 8, and Nν = 99, for the LOS with (µNθ/2+2, χ1) = (0.17, 0). A magnetic field of various intensities (0 G, 10 G, and 50 G) and direction
(θB, χB) = (π/2, 0) is considered. The reference direction for positive Q is taken parallel to the x-y plane (see Fig. 1). The PGMRES solver converges
in five iterations.
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Fig. 8. Emergent I (upper panels) and Q/I (lower panels) profiles calculated in the FAL-C atmospheric model (Ns = 70), with Nθ = 12, Nχ = 8,
and Nν = 99, for the LOS with (µNθ/2+2, χ1) = (0.17, 0) (left panels) and (µNθ/2+3, χ1) = (0.38, 0) (right panels). The line line center frequency ν0
is reported. A vertical bulk velocity field is considered (see Sect. 6.4). The reference direction for positive Q is taken parallel to the x-y plane (see
Fig. 1). The PGMRES solver converges in five iterations.

solver, where the preconditioner is designed in a multifidelity
framework by considering scattering in the light-weight CRD
limit.

For a two-level atom and a 1D atmospheric model, numeri-
cal experiments show that the proposed parallel PGMRES solver
is robust with respect to all the discretization parameters, shows
near optimal strong and weak scaling, and is highly competitive
in terms of run time. The proposed approach produces accurate
solutions in few iterations, with no need to provide a suitable
initial guess. In terms of memory footprint, the matrix-free
approach only requires the storage of the two vectors I and
ϵ, which are distributed among the available processors. This
approach thus promises to provide fast and accurate solutions

for the modeling of scattering polarization with angle-dependent
PRD effects, considering realistic 3D atmospheric models.

We finally remark that algorithms 1–2–3 are general. As
long as the emission vector ε is linear with respect to the inci-
dent radiation (and the elements of the propagation matrix are
known a-priori), the proposed solution strategy is indeed appli-
cable to different discretization techniques (e.g., finite elements),
geometries (e.g., 3D spatial domains), atomic models (e.g.,
two-term atoms), and scattering models (e.g., limit of CRD or
angle-averaged PRD).
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Appendix A: Thermal contribution to the line
emissivity

Under the assumption of isotropic inelastic collisions, the ther-
mal contribution to the line emissivity is given by (e.g., Alsina
Ballester et al. 2017)

εℓ,thi (r,Ω, ν) = kL(r)
ΓI(r)

ΓR + ΓI(r)
B(r)

2∑
K=0

Φ0K
0 (r,Ω, ν)T̂ K

0,i (r,Ω),

where i = 1, . . . , 4, B is the Planck function (if stimulated emis-
sion is neglected, the Wien limit must be considered), and Φ0K

0
is the generalized profile defined in Landi Degl’Innocenti &
Landolfi (2004, App. 13). The factor

ΓI(r)
ΓR + ΓI(r)

represents the branching ratio of the thermal contribution to the
total emissivity in Equation (2).

Appendix B: Continuum contributions

Continuum processes contribute to the emissivity through a ther-
mal and a scattering term. These contributions are formally
analogous to those due to line processes. Labeling the line and
continuum contributions with the indices ℓ and c, respectively,
we can write

εsc
i (r,Ω, ν) = εℓ,sc

i (r,Ω, ν) + εc,sc
i (r,Ω, ν),

εth
i (r,Ω, ν) = εℓ,thi (r,Ω, ν) + εc,th

i (r,Ω, ν).

As far as continuum scattering processes are concerned, it is
generally a very good approximation to assume that they are
coherent in frequency in the observer frame (e.g., Mihalas 1978;
del Pino Alemán et al. 2014). Under this assumption, the con-
tinuum scattering term is given by (e.g., Alsina Ballester et al.
2017)

εc,sc
i (r,Ω, ν) = σ(r, ν)

∑
KQ

(−1)QT K
Q,i(Ω)JK

−Q(r, ν),

where σ is the continuum opacity for scattering, and T K
Q,i is

the geometrical tensor introduced in Landi Degl’Innocenti &
Landolfi (2004, Sect. 5.11), and defined in the vertical refer-
ence system. Finally, the quantity JK

Q is the radiation field tensor,
defined as

JK
Q(r, ν) =

∮
dΩ
4π

4∑
j=1

T K
Q, j(Ω)I j(r,Ω, ν).

The continuum term can thus be written in an integral form
analogous to Eq. (3) in terms of the following redistribution
matrix

Rc
i j(r,Ω′,Ω, ν′, ν) = δ(ν − ν′)σ(r, ν)

∑
KQ

(−1)QT K
Q,i(Ω)T K

−Q, j(Ω
′).

For the conditions typically found in the solar atmosphere, the
thermal part of the continuum emissivity is isotropic and only
contributes to Stokes I, namely

εc,th
i (r,Ω, ν) = εc,th

I (r, ν)δi1. (B.1)

Moreover, continuum processes only contribute to the total opac-
ity (i.e., to the diagonal elements of the propagation matrix), with
an isotropic term

ηI(r,Ω, ν) = ηℓI (r,Ω, ν) + ηc
I (r, ν). (B.2)

Routines for the calculation of σ, εc,th
I , and ηc

I are publicly
available (e.g., Uitenbroek 2001).

Appendix C: Conversion to optical depth

To convert the spatial grid {zl}
Ns
l=1 to optical depth, the map

g : [zmin, zmax]→ [τmin, τmax] ⊂ R+

can be considered, which in a 1D geometry is defined as the
solution of the IVP

g′(z) =
1

| cos(θ)|
η1(z, θ, χ, ν), (C.1)

with

g(zmin) = τmin and g(zmax) = τmax for θ ∈ [0, π/2),
g(zmax) = τmin and g(zmin) = τmax for θ ∈ (π/2, π].

From the IVP (C.1), we obtain

g(z) = τmin +
1

| cos(θ)|

∫ z

zmin

dx η1(x, θ, χ, ν) for θ ∈ [0, π/2),

(C.2)

g(z) = τmin −
1

| cos(θ)|

∫ z

zmax

dx η1(x, θ, χ, ν) for θ ∈ (π/2, π],

(C.3)

and the conversion into the optical depth scale can thus be
performed numerically by replacing the integral in Eqs. (C.2)
and (C.3) with a suitable numerical quadrature (e.g., Janett &
Paganini 2018).
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