18 research outputs found

    An inbred line of the diploid strawberry Fragaria vesca f. semperflorens for genomic and molecular genetic studies in the Rosaceae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diploid woodland strawberry (<it>Fragaria vesca</it>) is an attractive system for functional genomics studies. Its small stature, fast regeneration time, efficient transformability and small genome size, together with substantial EST and genomic sequence resources make it an ideal reference plant for <it>Fragaria </it>and other herbaceous perennials. Most importantly, this species shares gene sequence similarity and genomic microcolinearity with other members of the Rosaceae family, including large-statured tree crops (such as apple, peach and cherry), and brambles and roses as well as with the cultivated octoploid strawberry, <it>F</it>. ×<it>ananassa</it>. <it>F. vesca </it>may be used to quickly address questions of gene function relevant to these valuable crop species. Although some <it>F. vesca </it>lines have been shown to be substantially homozygous, in our hands plants in purportedly homozygous populations exhibited a range of morphological and physiological variation, confounding phenotypic analyses. We also found the genotype of a named variety, thought to be well-characterized and even sold commercially, to be in question. An easy to grow, standardized, inbred diploid <it>Fragaria </it>line with documented genotype that is available to all members of the research community will facilitate comparison of results among laboratories and provide the research community with a necessary tool for functionally testing the large amount of sequence data that will soon be available for peach, apple, and strawberry.</p> <p>Results</p> <p>A highly inbred line, YW5AF7, of a diploid strawberry <it>Fragaria vesca </it>f. <it>semperflorens </it>line called "Yellow Wonder" (Y2) was developed and examined. Botanical descriptors were assessed for morphological characterization of this genotype. The plant line was found to be rapidly transformable using established techniques and media formulations.</p> <p>Conclusion</p> <p>The development of the documented YW5AF7 line provides an important tool for Rosaceae functional genomic analyses. These day-neutral plants have a small genome, a seed to seed cycle of 3.0 - 3.5 months, and produce fruit in 7.5 cm pots in a growth chamber. YW5AF7 is runnerless and therefore easy to maintain in the greenhouse, forms abundant branch crowns for vegetative propagation, and produces highly aromatic yellow fruit throughout the year in the greenhouse. <it>F. vesca </it>can be transformed with <it>Agrobacterium tumefaciens</it>, making these plants suitable for insertional mutagenesis, RNAi and overexpression studies that can be compared against a stable baseline of phenotypic descriptors and can be readily genetically substantiated.</p

    Re-annotation of the woodland strawberry (Fragaria vesca) genome

    Get PDF
    Fragaria vesca is a low-growing, small-fruited diploid strawberry species commonly called woodland strawberry. It is native to temperate regions of Eurasia and North America and while it produces edible fruits, it is most highly useful as an experimental perennial plant system that can serve as a model for the agriculturally important Rosaceae family. A draft of the F. vesca genome sequence was published in 2011 [Nat Genet 43:223,2011]. The first generation annotation (version 1.1) were developed using GeneMark-ES+[Nuc Acids Res 33:6494,2005]which is a self-training gene prediction tool that relies primarily on the combination of ab initio predictions with mapping high confidence ESTs in addition to mapping gene deserts from transposable elements. Based on over 25 different tissue transcriptomes, we have revised the F. vesca genome annotation, thereby providing several improvements over version 1.1. The new annotation, which was achieved using Maker, describes many more predicted protein coding genes compared to the GeneMark generated annotation that is currently hosted at the Genome Database for Rosaceae (http://www.rosaceae.org/). Our new annotation also results in an increase in the overall total coding length, and the number of coding regions found. The total number of gene predictions that do not overlap with the previous annotations is 2286, most of which were found to be homologous to other plant genes. We have experimentally verified one of the new gene model predictions to validate our results. Using the RNA-Seq transcriptome sequences from 25 diverse tissue types, the re-annotation pipeline improved existing annotations by increasing the annotation accuracy based on extensive transcriptome data. It uncovered new genes, added exons to current genes, and extended or merged exons. This complete genome re-annotation will significantly benefit functional genomic studies of the strawberry and other members of the Rosaceae.https://doi.org/10.1186/s12864-015-1221-

    Abiotic Stress‐Related Expressed Sequence Tags from the Diploid Strawberry Fragaria vesca

    Full text link
    Strawberry ( spp.) is a eudicotyledonous plant that belongs to the Rosaceae family, which includes other agronomically important plants such as raspberry ( L.) and several tree-fruit species. Despite the vital role played by cultivated strawberry in agriculture, few stress-related gene expression characterizations of this crop are available. To increase the diversity of available transcriptome sequence, we produced 41,430 L. expressed sequence tags (ESTs) from plants growing under water-, temperature-, and osmotic-stress conditions as well as a combination of heat and osmotic stresses that is often found in irrigated fields. Clustering and assembling of the ESTs resulted in a total of 11,836 contigs and singletons that were annotated using Gene Ontology (GO) terms. Furthermore, over 1200 sequences with no match to available Rosaceae ESTs were found, including six that were assigned the “response to stress” GO category. Analysis of EST frequency provided an estimate of steady state transcript levels, with 91 sequences exhibiting at least a 20-fold difference between treatments. This EST collection represents a useful resource to advance our understanding of the abiotic stress-response mechanisms in strawberry. The sequence information may be translated to valuable tree crops in the Rosaceae family, where whole-plant treatments are not as simple or practical

    SGR: an online genomic resource for the woodland strawberry

    Get PDF
    Fragaria vesca, a diploid strawberry species commonly known as the alpine or woodland strawberry, is a versatile experimental plant system and an emerging model for the Rosaceae family. An ancestral F. vesca genome contributed to the genome of the octoploid dessert strawberry (F. ×ananassa), and the extant genome exhibits synteny with other commercially important members of the Rosaceae family such as apple and peach. To provide a molecular description of floral organ and fruit development at the resolution of specific tissues and cell types, RNAs from flowers and early developmental stage fruit tissues of the inbred F. vesca line YW5AF7 were extracted and the resulting cDNA libraries sequenced using an Illumina HiSeq2000. To enable easy access as well as mining of this two-dimensional (stage and tissue) transcriptome dataset, a web-based database, the Strawberry Genomic Resource (SGR), was developed. SGR is a web accessible database that contains sample description, sample statistics, gene annotation, and gene expression analysis. This information can be accessed publicly from a web-based interface at http://bioinformatics.towson.edu/strawberry/Default.aspx . The SGR website provides user friendly search and browse capabilities for all the data stored in the database. Users are able to search for genes using a gene ID or description or obtain differentially expressed genes by entering different comparison parameters. Search results can be downloaded in a tabular format compatible with Microsoft excel application. Aligned reads to individual genes and exon/intron structures are displayed using the genome browser, facilitating gene re-annotation by individual users. The SGR database was developed to facilitate dissemination and data mining of extensive floral and fruit transcriptome data in the woodland strawberry. It enables users to mine the data in different ways to study different pathways or biological processes during reproductive development.https://doi.org/10.1186/1471-2229-13-22

    Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (Fragaria vesca) with chromosome-scale contiguity

    Get PDF
    Background: Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings: Here we utilized a robust, cost-effective approach to produce high-quality reference genomes. We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of similar to 7.9 million base pairs (Mb), representing a similar to 300-fold improvement of the previous version. The vast majority (>99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained similar to 24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions: Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions.Peer reviewe

    Single-molecule sequencing and optical mapping yields an improved genome of woodland strawberry (\u3ci\u3eFragaria vesca\u3c/i\u3e) with chromosome-scale contiguity

    Get PDF
    Background: Although draft genomes are available for most agronomically important plant species, the majority are incomplete, highly fragmented, and often riddled with assembly and scaffolding errors. These assembly issues hinder advances in tool development for functional genomics and systems biology. Findings: Here we utilized a robust, cost-effective approach to produce high-quality reference genomes.We report a near-complete genome of diploid woodland strawberry (Fragaria vesca) using single-molecule real-time sequencing from Pacific Biosciences (PacBio). This assembly has a contig N50 length of ~7.9 million base pairs (Mb), representing a ~300-fold improvement of the previous version. The vast majority (\u3e99.8%) of the assembly was anchored to 7 pseudomolecules using 2 sets of optical maps from Bionano Genomics. We obtained ~24.96 Mb of sequence not present in the previous version of the F. vesca genome and produced an improved annotation that includes 1496 new genes. Comparative syntenic analyses uncovered numerous, large-scale scaffolding errors present in each chromosome in the previously published version of the F. vesca genome. Conclusions: Our results highlight the need to improve existing short-read based reference genomes. Furthermore, we demonstrate how genome quality impacts commonly used analyses for addressing both fundamental and applied biological questions

    The Short Inflorescence Mutation in Diploid Strawberry Fragaria vesca Affects Inflorescence Architecture and Runner Elongation

    No full text
    Mutants are useful for determining the genes that underlie a given trait. This information is highly useful for developing molecular markers for breeding and is the foundational knowledge required for future genomic crop improvements. The dessert strawberry, Fragaria ×ananassa, is a valuable crop with high potential for increased use in controlled environment agriculture. The genome of the woodland strawberry Fragaria vesca is the dominant genome of the four diploid strawberry subgenomes that contribute to the octoploid F. ×ananassa genome. F. vesca is therefore a useful reference system for determining gene function and should be a useful source of gene diversity for breeding of F. ×ananassa. Chemical mutagenesis of the inbred F. vesca line H4 F7-3 resulted in one M2 line with a smaller stature overall and which produces flowers on very short peduncles close to the crown. This line was named short inflorescence (sin). The sin phenotype results from a single gene recessive mutation that is pleiotropic in that the mutation also affects internode lengths of runners as well as petiole elongation of sin plants. Microscopic characterization revealed that sin peduncles are most likely short because of a failure of cells to elongate. Inflorescences, runners, and petioles of sin plants were found to elongate in response to exogenous gibberellin, indicating that sin could be a gibberellin biosynthesis or transport mutant. A brief characterization of sin plants is presented to facilitate collaborative studies of the line
    corecore