101 research outputs found

    Structure of human saposin A at lysosomal pH.

    Get PDF
    The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme β-galactocerebrosidase (GALC), which catalyzes the breakdown of β-D-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from a `closed' to an `open' conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Å resolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined `closed' conformation, showing that pH alone is not sufficient for the transition to the `open' conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility.CHH is funded by a Wellcome Trust PhD studentship, RJR is supported by a Principal Research Fellowship funded by the Wellcome Trust (Grant No. 082961/Z/07/Z) and JED is supported by a Royal Society University Research Fellowship (UF100371). The Cambridge Institute for Medical Research is supported by a Wellcome Trust Strategic Award (100140).This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1107/S2053230X1500858

    New therapeutic approaches for Krabbe disease: The potential of pharmacological chaperones.

    Get PDF
    Missense mutations in the lysosomal hydrolase β-galactocerebrosidase (GALC) account for at least 40% of known cases of Krabbe disease (KD). Most of these missense mutations are predicted to disrupt the fold of the enzyme, preventing GALC in sufficient amounts from reaching its site of action in the lysosome. The predominant central nervous system (CNS) pathology and the absence of accumulated primary substrate within the lysosome mean that strategies used to treat other lysosomal storage disorders (LSDs) are insufficient in KD, highlighting the still unmet clinical requirement for successful KD therapeutics. Pharmacological chaperone therapy (PCT) is one strategy being explored to overcome defects in GALC caused by missense mutations. In recent studies, several small-molecule inhibitors have been identified as promising chaperone candidates for GALC. This Review discusses new insights gained from these studies and highlights the importance of characterizing both the chaperone interaction and the underlying mutation to define properly a responsive population and to improve the translation of existing lead molecules into successful KD therapeutics. We also highlight the importance of using multiple complementary methods to monitor PCT effectiveness. Finally, we explore the exciting potential of using combination therapy to ameliorate disease through the use of PCT with existing therapies or with more generalized therapeutics, such as proteasomal inhibition, that have been shown to have synergistic effects in other LSDs. This, alongside advances in CNS delivery of recombinant enzyme and targeted rational drug design, provides a promising outlook for the development of KD therapeutics. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.S.J.S. is funded by an MRC PhD studentship and J.E.D. is supported by a Royal Society University Research Fellowship (UF100371). The Cambridge Institute for Medical Research is supported by Wellcome Trust Strategic Award 100140.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Wiley

    Expression, purification, crystallization and preliminary crystallographic analysis of BipD, a component of the Burkholderia pseudomallei type III secretion system

    Get PDF
    A construct consisting of residues 10–310 of mature BipD, a component of the B. pseudomallei type III secretion system, has been crystallized. Native BipD crystals and SeMet and K2PtCl4 derivative crystals have undergone preliminary crystallographic analysis

    The mechanism of glycosphingolipid degradation revealed by a GALC-SapA complex structure.

    Get PDF
    Sphingolipids are essential components of cellular membranes and defects in their synthesis or degradation cause severe human diseases. The efficient degradation of sphingolipids in the lysosome requires lipid-binding saposin proteins and hydrolytic enzymes. The glycosphingolipid galactocerebroside is the primary lipid component of the myelin sheath and is degraded by the hydrolase β-galactocerebrosidase (GALC). This enzyme requires the saposin SapA for lipid processing and defects in either of these proteins causes a severe neurodegenerative disorder, Krabbe disease. Here we present the structure of a glycosphingolipid-processing complex, revealing how SapA and GALC form a heterotetramer with an open channel connecting the enzyme active site to the SapA hydrophobic cavity. This structure defines how a soluble hydrolase can cleave the polar glycosyl headgroups of these essential lipids from their hydrophobic ceramide tails. Furthermore, the molecular details of this interaction provide an illustration for how specificity of saposin binding to hydrolases is encoded

    TAPBPR bridges UDP-glucose : glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway

    Get PDF
    Funding Wellcome: Senior Research Fellowship 104647, Andreas Neerincx, Louise H Boyle Royal Society: University Research Fellowship, UF100371, Janet E Deane Cancer Research UK: Programme Grant, C7056A, Andy van Hateren, Tim Elliott Deutsche Forschungsgemeinschaft: SFB 685, Nico Trautwein, Stefan Stevanović Wellcome: PhD studentship, 089563, Clemens Hermann Wellcome: Strategic Award 100140, Robin Antrobus Wellcome: Programme grant, WT094847MA, Huan Cao Acknowledgements We are extremely grateful to Peter Cresswell and Najla Arshad (Yale University School of Medicine, New Haven, CT) for valuable advice, tapasin and TAP-specific antibody reagents, and the recombinant calreticulin proteins. We thank John Trowsdale (University of Cambridge, UK) for his mentorship and critical reading of this manuscript, and Jim Kaufman (University of Cambridge, UK) for useful discussions. We also thank Yi Cao (Cranfield University, UK) for MATLAB programming for densitometry analysis, and Mark Vickers and Sadie Henderson (Scottish National Blood Transfusion Services, UK) for permitting the use of and assistance with the Amersham WB system. The reagent ARP7099 FEC peptide pool was obtained from the Centre for AIDS Reagents, National Institute for Biological Standards and Control (NIBSC), and was donated by the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH.Peer reviewedPublisher PD

    Expression, limited proteolysis and preliminary crystallographic analysis of IpaD, a component of the Shigella flexneri type III secretion system

    Get PDF
    IpaD, the putative needle-tip protein of the S. flexneri type III secretion system, has been crystallized in a variety of crystal forms using in-drop proteolysis. Native and selenomethionine-labelled data collection and preliminary analyses are reported
    corecore