13 research outputs found
Rates of acquisition of pneumococcal colonization and transmission probabilities, by serotype, among newborn infants in Kilifi District, Kenya.
BACKGROUND: Herd protection and serotype replacement disease following introduction of pneumococcal conjugate vaccine (PCV) are attributable to the vaccine's impact on colonization. Prior to vaccine introduction in Kenya, we did an epidemiological study to estimate the rate of pneumococcal acquisition, by serotype, in an uncolonized population. METHODS: Nasopharyngeal swab specimens were taken from newborns aged ≤ 7 days and weekly thereafter for 13 weeks. Parents, and siblings aged <10 years, were swabbed at monthly intervals. Swabs were transported in skim milk-tryptone-glucose-glycerin and cultured on gentamicin blood agar. Pneumococci were serotyped by the Quellung reaction. We used survival analysis and Cox regression analysis to examine serotype-specific acquisition rates and risk factors and calculated transmission probabilities from the pattern of acquisitions within the family. RESULTS: Of 1404 infants recruited, 887 were colonized by 3 months of age, with the earliest acquisition detected on the first day of life. The median time to acquisition was 38.5 days. The pneumococcal acquisition rate was 0.0189 acquisitions/day (95% confidence interval, .0177-.0202 acquisitions/day). Serotype-specific acquisition rates varied from 0.00002-0.0025 acquisitions/day among 49 different serotypes. Season, coryza, and exposure to cigarettes, cooking fumes, and other children in the home were each significant risk factors for acquisition. The transmission probability per 30-day duration of contact with a carrier was 0.23 (95% CI, .20-.26). CONCLUSIONS: Newborn infants in Kilifi have high rates of nasopharyngeal acquisition of pneumococci. Half of these acquisitions involve serotypes not included in any current vaccine. Several risk factors are modifiable through intervention. Newborns represent a consistent population of pneumococcus-naive individuals in which to estimate the impact of PCV on transmission
Rates of acquisition and clearance of pneumococcal serotypes in the nasopharynges of children in Kilifi District, Kenya.
BACKGROUND: To understand and model the impact of pneumococcal conjugate vaccines at the population level, we need to know the transmission dynamics of individual pneumococcal serotypes. We estimated serotype-specific clearance and acquisition rates of nasopharyngeal colonization among Kenyan children. METHODS: Children aged 3-59 months who were identified as carriers in a cross-sectional survey were followed-up approximately 1, 2, 4, 8, 16, and 32 days later and monthly thereafter until culture of 2 consecutive swabs yielded an alternative serotype or no pneumococcus. Serotype-specific clearance rates were estimated by exponential regression of interval-censored carriage durations. Duration was estimated as the reciprocal of the clearance rate, and acquisition rates were estimated on the basis of prevalence and duration, assuming an equilibrium state. RESULTS: Of 2840 children sampled between October 2006 and December 2008, 1868 were carriers. The clearance rate was 0.032 episodes/day (95% confidence interval [CI], .030-.034), for a carriage duration of 31.3 days, and the rate varied by serotype (P< .0005). Carriage durations for the 28 serotypes with ≥ 10 carriers ranged from 6.7 to 50 days. Clearance rates increased with year of age, adjusted for serotype (hazard ratio, 1.21; 95% CI, 1.15-1.27). The acquisition rate was 0.061 episodes/day (95% CI, .055-.067), which did not vary with age. Serotype-specific acquisition rates varied from 0.0002 to 0.0022 episodes/day. Serotype-specific acquisition rates correlated with prevalence (r=0.91; P< .00005) and with acquisition rates measured in a separate study involving 1404 newborns in Kilifi (r=0.87; P< .00005). CONCLUSIONS: The large sample size and short swabbing intervals provide a precise description of the prevalence, duration, and acquisition of carriage of 28 pneumococcal serotypes. In Kilifi, young children experience approximately 8 episodes of carriage per year. The declining prevalence with age is attributable to increasing clearance rates
The Prevalence and Risk Factors for Pneumococcal Colonization of the Nasopharynx among Children in Kilifi District, Kenya
BACKGROUND: Pneumococcal conjugate vaccines (PCV) reduce nasopharyngeal carriage of vaccine-serotype pneumococci but increase in the carriage of non-vaccine serotypes. We studied the epidemiology of carriage among children 3-59 months old before vaccine introduction in Kilifi, Kenya. METHODS: In a rolling cross-sectional study from October 2006 to December 2008 we approached 3570 healthy children selected at random from the population register of the Kilifi Health and Demographic Surveillance System and 134 HIV-infected children registered at a specialist clinic. A single nasopharyngeal swab was transported in STGG and cultured on gentamicin blood agar. A single colony of pneumococcus was serotyped by Quellung reaction. RESULTS: Families of 2840 children in the population-based sample and 99 in the HIV-infected sample consented to participate; carriage prevalence was 65.8% (95% CI, 64.0-67.5%) and 76% (95% CI, 66-84%) in the two samples, respectively. Carriage prevalence declined progressively with age from 79% at 6-11 months to 51% at 54-59 months (p<0.0005). Carriage was positively associated with coryza (Odds ratio 2.63, 95%CI 2.12-3.25) and cough (1.55, 95%CI 1.26-1.91) and negatively associated with recent antibiotic use (0.53 95%CI 0.34-0.81). 53 different serotypes were identified and 42% of isolates were of serotypes contained in the 10-valent PCV. Common serotypes declined in prevalence with age while less common serotypes did not. CONCLUSION: Carriage prevalence in children was high, serotypes were diverse, and the majority of strains were of serotypes not represented in the 10-valent PCV. Vaccine introduction in Kenya will provide a natural test of virulence for the many circulating non-vaccine serotypes
Demographic distribution of the target population and the study sample.
<p>Demographic distribution of the target population and the study sample.</p
Serotype carriage prevalence among population-based and HIV-infected samples.
<p>There is no evidence of a difference between the HIV-infected and population-based samples in the distribution of serotypes (χ<sup>2</sup> (28) 33.4, p = 0.223).</p
Risk factors for prevalent nasopharyngeal carriage of <i>S. pneumoniae</i>.
<p>OR Odds Ratio; aOR adjusted Odds Ratio. Variables included in the final model but not displayed here are age (6 monthly strata), month of sampling and fieldworker taking the sample (n = 9). The full analysis is displayed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0030787#pone.0030787.s003" target="_blank">Table S2</a>. The final model fit was tested using Hosmer-Lemeshow χ<sup>2</sup> in 10 covariate strata (p = 0.95).</p
Carriage prevalence by age, sex and antiretroviral drug use among HIV-infected children.
<p>Carriage prevalence by age, sex and antiretroviral drug use among HIV-infected children.</p
Prevalence (and 95% CI) of nasopharyngeal carriage in children in Kilifi by age and by calendar month within the survey.
<p>Prevalence (and 95% CI) of nasopharyngeal carriage in children in Kilifi by age and by calendar month within the survey.</p